243 research outputs found

    Impact of transient groundwater storage on the discharge of Himalayan rivers

    No full text
    International audienceIn the course of the transfer of precipitation into rivers, water is temporarily stored in reservoirs with different residence times such as soils, groundwater, snow and glaciers. In the central Himalaya, the water budget is thought to be primarily controlled by monsoon rainfall, snow and glacier melt, and secondarily by evapotranspiration. An additional contribution from deep groundwater has been deduced from the chemistry of Himalayan rivers, but its importance in the annual water budget remains to be evaluated. Here we analyse records of daily precipitation and discharge within twelve catchments in Nepal over about 30 years. We observe annual hysteresis loops--that is, a time lag between precipitation and discharge--in both glaciated and unglaciated catchments and independent of the geological setting. We infer that water is stored temporarily in a reservoir with characteristic response time of about 45 days, suggesting a diffusivity typical of fractured basement aquifers. We estimate this transient storage capacity at about 28km3 for the three main Nepal catchments; snow and glacier melt contribute around 14km3yr-1, about 10% of the annual river discharge. We conclude that groundwater storage in a fractured basement influences significantly the Himalayan river discharge cycle

    Seventeen years of American cutaneous leishmaniasis in a Southern Brazilian municipality

    Get PDF
    We reviewed the records of 151 patients diagnosed with American cutaneous leishmaniasis (ACL) from 1993 to 2009 in the municipality of Japura, ParanĂĄ, Brazil. Gender, age, occupation, place of residence, location of lesions, type and number of lesions were analyzed. The prevalence rate of ACL was 11.5/10,000 hab, of which 84.7% were male, 58.3% lived in rural area and 49.0% were farmers. The most frequent age group was between 30 to 39 years (26.6%). Skin lesions occurred in 92.7% of the patients with predominance in the lower limbs (23.9%) and 49.1% of the records did not include the number of lesions location due to incomplete filling. A single ulceration was present in 44.4%. JapurĂĄ is an endemic area for ACL, requiring public actions and preventive education

    Reversal of Cocaine-Conditioned Place Preference through Methyl Supplementation in Mice: Altering Global DNA Methylation in the Prefrontal Cortex

    Get PDF
    Analysis of global methylation in cells has revealed correlations between overall DNA methylation status and some biological states. Recent studies suggest that epigenetic regulation through DNA methylation could be responsible for neuroadaptations induced by addictive drugs. However, there is no investigation to determine global DNA methylation status following repeated exposure to addictive drugs. Using mice conditioned place preference (CPP) procedure, we measured global DNA methylation level in the nucleus accumbens (NAc) and the prefrontal cortex (PFC) associated with drug rewarding effects. We found that cocaine-, but not morphine- or food-CPP training decreased global DNA methylation in the PFC. Chronic treatment with methionine, a methyl donor, for 25 consecutive days prior to and during CPP training inhibited the establishment of cocaine, but not morphine or food CPP. We also found that both mRNA and protein level of DNMT (DNA methytransferase) 3b in the PFC were downregulated following the establishment of cocaine CPP, and the downregulation could be reversed by repeated administration of methionine. Our study indicates a crucial role of global PFC DNA hypomethylation in the rewarding effects of cocaine. Reversal of global DNA hypomethylation could significantly attenuate the rewarding effects induced by cocaine. Our results suggest that methionine may have become a potential therapeutic target to treat cocaine addiction

    Comparative cytogenetic analysis between Lonchorhina aurita and Trachops cirrhosus (Chiroptera, Phyllostomidae)

    Get PDF
    Phyllostomidae comprises the most diverse family of neotropical bats, its wide range of morphological features leading to uncertainty regarding phylogenetic relationships. Seeing that cytogenetics is one of the fields capable of providing support for currently adopted classifications through the use of several markers, a comparative analysis between two Phyllostomidae species was undertaken in the present study, with a view to supplying datasets for the further establishment of Phyllostomidae evolutionary relationships. Karyotypes of Lonchorhina aurita (2n = 32; FN = 60) and Trachops cirrhosus (2n = 30; FN = 56) were analyzed by G- and C-banding, silver nitrate staining (Ag-NOR) and base-specific fluorochromes. Chromosomal data obtained for both species are in agreement with those previously described, except for X chromosome morphology in T. cirrhosus, hence indicating chromosomal geographical variation in this species. A comparison of G-banding permitted the identification of homeologies in nearly all the chromosomes. Furthermore, C-banding and Ag-NOR patterns were comparable to what has already been observed in the family. In both species CMA3 /DA/DAPI staining revealed an R-banding-like pattern with CMA 3 , whereas DAPI showed uniform staining in all the chromosomes. Fluorochrome staining patterns for pericentromeric constitutive heterochromatin (CH) regions, as well as for nucleolar organizing regions (NORs), indicated heterogeneity regarding these sequences among Phyllostomidae species
    • 

    corecore