152 research outputs found

    The Global Groundwater Crisis

    Get PDF
    Groundwater depletion the world over poses a far greater threat to global water security than is currently acknowledged

    Sustainable Groundwater Management in the Arid Southwestern US: Coachella Valley, California

    Full text link
    Sustainable groundwater management requires approaches to assess the influence of climate and management actions on the evolution of groundwater systems. Traditional approaches that apply continuity to assess groundwater sustainability fail to capture the spatial variability of aquifer responses. To address this gap, our study evaluates groundwater elevation data from the Coachella Valley, California, within a groundwater sustainability framework given the adoption of integrative management strategies in the valley. Our study details an innovative approach employing traditional statistical methods to improve understanding of aquifer responses. In this analysis, we evaluate trends at individual groundwater observation wells and regional groundwater behaviors using field significance. Regional elevation trends identified no significant trends during periods of intense groundwater replenishment, active since 1973, despite spatial variability in individual well trends. Our results illustrate the spatially limited effects of groundwater replenishment occur against a setting of long-term groundwater depletion, raising concerns over the definition of sustainable groundwater management in aquifer systems employing integrative management strategies

    Impact of transient groundwater storage on the discharge of Himalayan rivers

    No full text
    International audienceIn the course of the transfer of precipitation into rivers, water is temporarily stored in reservoirs with different residence times such as soils, groundwater, snow and glaciers. In the central Himalaya, the water budget is thought to be primarily controlled by monsoon rainfall, snow and glacier melt, and secondarily by evapotranspiration. An additional contribution from deep groundwater has been deduced from the chemistry of Himalayan rivers, but its importance in the annual water budget remains to be evaluated. Here we analyse records of daily precipitation and discharge within twelve catchments in Nepal over about 30 years. We observe annual hysteresis loops--that is, a time lag between precipitation and discharge--in both glaciated and unglaciated catchments and independent of the geological setting. We infer that water is stored temporarily in a reservoir with characteristic response time of about 45 days, suggesting a diffusivity typical of fractured basement aquifers. We estimate this transient storage capacity at about 28km3 for the three main Nepal catchments; snow and glacier melt contribute around 14km3yr-1, about 10% of the annual river discharge. We conclude that groundwater storage in a fractured basement influences significantly the Himalayan river discharge cycle

    Groundwater resources in the Jabal Al Hass region, northwest Syria: an assessment of past use and future potential

    Get PDF
    In many cases, the development of groundwater resources to boost agricultural production in dry areas has led to a continuous decline in groundwater levels; this has called into question the sustainability of such exploitation. In developing countries, limited budgets and scarce hydrological data often do not allow groundwater resources to be assessed through groundwater modeling. A case study is presented of a low-cost water-balance approach to groundwater resource assessments in a 1,550 k

    Prevention and Therapy of Hepatocellular Carcinoma by Vaccination with TM4SF5 Epitope-CpG-DNA-Liposome Complex without Carriers

    Get PDF
    Although peptide vaccines have been actively studied in various animal models, their efficacy in treatment is limited. To improve the efficacy of peptide vaccines, we previously formulated an efficacious peptide vaccine without carriers using the natural phosphodiester bond CpG-DNA and a special liposome complex (Lipoplex(O)). Here, we show that immunization of mice with a complex consisting of peptide and Lipoplex(O) without carriers significantly induces peptide-specific IgG2a production in a CD4+ cells- and Th1 differentiation-dependent manner. The transmembrane 4 superfamily member 5 protein (TM4SF5) has gained attention as a target for hepatocellular carcinoma (HCC) therapy because it induces uncontrolled growth of human HCC cells via the loss of contact inhibition. Monoclonal antibodies specific to an epitope of human TM4SF5 (hTM4SF5R2-3) can recognize native mouse TM4SF5 and induce functional effects on mouse cancer cells. Pre-immunization with a complex of the hTM4SF5R2-3 epitope and Lipoplex(O) had prophylactic effects against tumor formation by HCC cells implanted in an mouse tumor model. Furthermore, therapeutic effects were revealed regarding the growth of HCC when the vaccine was injected into mice after tumor formation. These results suggest that our improved peptide vaccine technology provides a novel prophylaxis measure as well as therapy for HCC patients with TM4SF5-positive tumors

    From Global to Local and Vice Versa: On the Importance of the 'Globalization' Agenda in Continental Groundwater Research and Policy-Making.

    Get PDF
    Groundwater is one of the most important environmental resources and its use continuously rises globally for industrial, agricultural, and drinking water supply purposes. Because of its importance, more knowledge about the volume of usable groundwater is necessary to satisfy the global demand. Due to the challenges in quantifying the volume of available global groundwater, studies which aim to assess its magnitude are limited in number. They are further restricted in scope and depth of analysis as, in most cases, they do not explain how the estimates of global groundwater resources have been obtained, what methods have been used to generate the figures and what levels of uncertainty exist. This article reviews the estimates of global groundwater resources. It finds that the level of uncertainty attached to existing numbers often exceeds 100 % and strives to establish the reasons for discrepancy. The outcome of this study outlines the need for a new agenda in water research with a more pronounced focus on groundwater. This new research agenda should aim at enhancing the quality and quantity of data provision on local and regional groundwater stocks and flows. This knowledge enhancement can serve as a basis to improve policy-making on groundwater resources globally. Research-informed policies will facilitate more effective groundwater management practices to ensure a more rapid progress of the global water sector towards the goal of sustainability
    corecore