43 research outputs found

    Woodland Recovery after Suppression of Deer: Cascade effects for Small Mammals, Wood Mice (Apodemus sylvaticus) and Bank Voles (Myodes glareolus)

    Get PDF
    Over the past century, increases in both density and distribution of deer species in the Northern Hemisphere have resulted in major changes in ground flora and undergrowth vegetation of woodland habitats, and consequentially the animal communities that inhabit them. In this study, we tested whether recovery in the vegetative habitat of a woodland due to effective deer management (from a peak of 0.4–1.5 to <0.17 deer per ha) had translated to the small mammal community as an example of a higher order cascade effect. We compared deer-free exclosures with neighboring open woodland using capture-mark-recapture (CMR) methods to see if the significant difference in bank vole (Myodes glareolus) and wood mouse (Apodemus sylvaticus) numbers between these environments from 2001–2003 persisted in 2010. Using the multi-state Robust Design method in program MARK we found survival and abundance of both voles and mice to be equivalent between the open woodland and the experimental exclosures with no differences in various metrics of population structure (age structure, sex composition, reproductive activity) and individual fitness (weight), although the vole population showed variation both locally and temporally. This suggests that the vegetative habitat - having passed some threshold of complexity due to lowered deer density - has allowed recovery of the small mammal community, although patch dynamics associated with vegetation complexity still remain. We conclude that the response of small mammal communities to environmental disturbance such as intense browsing pressure can be rapidly reversed once the disturbing agent has been removed and the vegetative habitat is allowed to increase in density and complexity, although we encourage caution, as a source/sink dynamic may emerge between old growth patches and the recently disturbed habitat under harsh conditions

    Which Factors Determine Spatial Segregation in the South American Opossums (Didelphis aurita and D. albiventris)? An Ecological Niche Modelling and Geometric Morphometrics Approach

    Get PDF
    Didelphis albiventris and D. aurita are Neotropical marsupials that share a unique evolutionary history and both are largely distributed throughout South America, being primarily allopatric throughout their ranges. In the Araucaria moist forest of Southern Brazil these species are sympatric and they might potentially compete having similar ecology. For this reason, they are ideal biological models to address questions about ecological character displacement and how closely related species might share their geographic space. Little is known about how two morphologically similar species of marsupials may affect each other through competition, if by competitive exclusion and competitive release. We combined ecological niche modeling and geometric morphometrics to explore the possible effects of competition on their distributional ranges and skull morphology. Ecological niche modeling was used to predict their potential distribution and this method enabled us to identify a case of biotic exclusion where the habit generalist D. albiventris is excluded by the presence of the specialist D. aurita. The morphometric analyses show that a degree of shape discrimination occurs between the species, strengthened by allometric differences, which possibly allowed them to occupy marginally different feeding niches supplemented by behavioral shift in contact areas. Overlap in skull morphology is shown between sympatric and allopatric specimens and a significant, but weak, shift in shape occurs only in D. aurita in sympatric areas. This could be a residual evidence of a higher past competition between both species, when contact zones were possibly larger than today. Therefore, the specialist D. aurita acts a biotic barrier to D. albiventris when niche diversity is not available for coexistence. On the other hand, when there is niche diversification (e.g. habitat mosaic), both species are capable to coexist with a minimal competitive effect on the morphology of D. aurita

    Colonization history of the western corn rootworm (Diabrotica virgifera virgifera) in North America: insights from random forest ABC using microsatellite data

    Get PDF
    First described from western Kansas, USA, the western corn rootworm, Diabrotica virgifera virgifera, is one of the worst pests of maize. The species is generally thought to be of Mexican origin and to have incidentally followed the expansion of maize cultivation into North America thousands of years ago. However, this hypothesis has never been investigated formally. In this study, the genetic variability of samples collected throughout North America was analysed at 13 microsatellite marker loci to explore precisely the population genetic structure and colonization history of D. v. virgifera. In particular, we used up-to-date approximate Bayesian computation methods based on random forest algorithms to test a Mexican versus a central-USA origin of the species, and to compare various possible timings of colonization. This analysis provided strong evidence that the origin of D. v. virgifera was southern (Mexico, or even further south). Surprisingly, we also found that the expansion of the species north of its origin was recent—probably not before 1100 years ago—thus indicating it was not directly associated with the early history of maize expansion out of Mexico, a far more ancient event

    Single-Molecule Force Spectroscopy: Experiments, Analysis, and Simulations

    Get PDF
    International audienceThe mechanical properties of cells and of subcellular components are important to obtain a mechanistic molecular understanding of biological processes. The quantification of mechanical resistance of cells and biomolecules using biophysical methods matured thanks to the development of nanotechnologies such as optical and magnetic tweezers, the biomembrane force probe and atomic force microscopy (AFM). The quantitative nature of force spectroscopy measurements has converted AFM into a valuable tool in biophysics. Force spectroscopy allows the determination of the forces required to unfold protein domains and to disrupt individual receptor/ligand bonds. Molecular simulation as a computational microscope allows investigation of similar biological processes with an atomistic detail. In this chapter, we first provide a step-by-step protocol of force spectroscopy including sample preparation, measurement and analysis of force spectroscopy using AFM and its interpretation in terms of available theories. Next, we present the background for molecular dynamics (MD) simulations focusing on steered molecular dynamics (SMD) and the importance of bridging of computational tools with experimental technique

    Tomato-aphid-hoverfly: A tritrophic interaction incompatible for pest management

    Get PDF
    peer reviewedTrichome-based tomato resistance offers the potential to reduce pesticide use, but its compatibility with biological control remains poorly understood. We evaluated Episyrphus balteatus De Geer (Diptera, Syrphidae), an efficient aphidophagous predator, as a potential biological control agent of Myzus persicae Sulzer (Hemiptera, Aphididae) on trichome-bearing tomato cultivars. Episyrphus balteatus’ foraging and oviposition behavior, as well as larval mobility and aphid accessibility, were compared between two tomato cultivars (Lycopersicon esculentum Mill. ‘Moneymaker’ and ‘Roma’) and two other crop plants; broad bean (Vicia faba L.) and potato (Solanum tuberosum L.). Hoverfly adults landed and laid more eggs on broad beans than on three species of Solanaceae. Hoverfly larval movement was drastically reduced on tomato, and a high proportion of hoverfly larvae fell from the plant before reaching aphid prey. After quantifying trichome abundance on each of these four plants, we suggest that proprieties of the plant surface, specifically trichomes, are a key factor contributing to reduced efficacy of E. balteatus as a biological agent for aphid control on tomatoes

    A giant stream of metal-rich stars in the halo of the galaxy M31. Nature 412

    Get PDF
    Recent observations have revealed streams of gas and stars in the halo of the Milky Way 1−3 that are the debris from interactions between our Galaxy and some of its dwarf companion galaxies; the Sagittarius dwarf galaxy and the Magellanic clouds. Analysis of the material has shown that much of the halo is made up of cannibalized satellite galaxies 2,4, and that dark matter is distributed nearly spherically in the Milky Way. It remains unclear, however, whether cannibalized substructures are as common in the haloes of galaxies as predicted by galaxy-formation theory 5. Here we report the discovery of a giant stream of metal-rich stars within the halo of the nearest large galaxy, M31 (the Andromeda galaxy). The source of this stream could be the dwarf galaxies M32 and NGC205, which are close companions of M31 and which may have lost a substantial number of stars owing to tidal interactions. The results demonstrate that the epoch of galaxy building still continues, albeit at a modest rate, and that tidal streams may be a generic feature of galaxy haloes. Within the framework of hierarchical structure formation, large spiral galaxies like the Milky Way or Andromeda arose from the merger of many small galaxies and protogalaxies 6. Later i
    corecore