68 research outputs found

    Feasibility and effectiveness of offering a solution-focused follow-up to employees with psychological problems or muscle skeletal pain: a randomised controlled trial

    Get PDF
    BACKGROUND: Long-term sick leave has been of concern to politicians and decision-makers in Norway for several years. In the current study we assess the feasibility and effectiveness of offering a voluntary, solution-focused follow-up to sick-listed employees. METHODS: Employees on long-term sick leave due to psychological problems or muscle skeletal pain were randomly allocated to be offered a solution-focused follow-up (n = 122) or "treatment as usual" (n = 106). The intervention was integrated within 2 social security offices' regular follow-up. The intervention group was informed about the offer with letters, telephone calls and information meetings. Feasibility was measured by rate of uptake to the intervention, and effectiveness by number of days on sick leave. RESULTS: In general, few were reached with the different information elements. While the letter was sent to all, only 31% were reached by telephone and 15% attended the information meetings. Thirteen employees (11.5%) in the intervention group participated in the solution-focused follow-up. Intention to treat analysis showed no difference in mean length of sick leave between the intervention group (217 days) and the control group (189 days) (p = 0,101). CONCLUSION: Even if the information strategy might be improved, it is not likely that a voluntary solution-focused follow-up offered by the social security offices would result in measurable reduction in length of sick leave on a population level. However, the efficacy of a solution-focused follow-up for the persons reporting a need for this approach should be further investigated

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Solution-focused intervention for sick listed employees with psychological problems or muscle skeletal pain: a randomised controlled trial [ISRCTN39140363]

    Get PDF
    BACKGROUND: Long-term sick leave has been of concern to politicians and decision-makers in Norway for several years. In the current study we assess the efficacy of a solution-focused follow-up for sick-listed employees. METHODS: Employees on long-term sick leave due to psychological problems or muscle skeletal pain (n = 703) were invited to participate in the project. Following self-recruitment, 103 were randomly allocated to receive solution-focused follow-up (n = 53) or "treatment as usual" (n = 50). The intervention was integrated within the regular follow up of six social security offices and organised as eight weekly solution focused work sessions. Effectiveness was measured by rate of return to work and health related quality of life (SF-36). RESULTS: Intention to treat analysis showed no significant differences between the two groups for any of the outcome measures. Secondary analysis, comparing those who attended at least 50% of the sessions with the control group revealed a significant difference in favour of the active intervention group in the SF-36 subscale of mental health (Effect Size 0.56, p = 0.05). When comparing the subgroup of participants with psychological problems there was a significant difference in mental health in favour of the intervention group (Effect Size 0.71, p = 0.041). CONCLUSION: A voluntary solution-focused intervention offered by social-security offices is no more effective than regular follow up for employees on long-term sick leave due to psychological problems or muscle skeletal pain

    Phylogenetic Comparison of F-Box (FBX) Gene Superfamily within the Plant Kingdom Reveals Divergent Evolutionary Histories Indicative of Genomic Drift

    Get PDF
    The emergence of multigene families has been hypothesized as a major contributor to the evolution of complex traits and speciation. To help understand how such multigene families arose and diverged during plant evolution, we examined the phylogenetic relationships of F-Box (FBX) genes, one of the largest and most polymorphic superfamilies known in the plant kingdom. FBX proteins comprise the target recognition subunit of SCF-type ubiquitin-protein ligases, where they individually recruit specific substrates for ubiquitylation. Through the extensive analysis of 10,811 FBX loci from 18 plant species, ranging from the alga Chlamydomonas reinhardtii to numerous monocots and eudicots, we discovered strikingly diverse evolutionary histories. The number of FBX loci varies widely and appears independent of the growth habit and life cycle of land plants, with a little as 198 predicted for Carica papaya to as many as 1350 predicted for Arabidopsis lyrata. This number differs substantially even among closely related species, with evidence for extensive gains/losses. Despite this extraordinary inter-species variation, one subset of FBX genes was conserved among most species examined. Together with evidence of strong purifying selection and expression, the ligases synthesized from these conserved loci likely direct essential ubiquitylation events. Another subset was much more lineage specific, showed more relaxed purifying selection, and was enriched in loci with little or no evidence of expression, suggesting that they either control more limited, species-specific processes or arose from genomic drift and thus may provide reservoirs for evolutionary innovation. Numerous FBX loci were also predicted to be pseudogenes with their numbers tightly correlated with the total number of FBX genes in each species. Taken together, it appears that the FBX superfamily has independently undergone substantial birth/death in many plant lineages, with its size and rapid evolution potentially reflecting a central role for ubiquitylation in driving plant fitness

    Relationships of Cetacea (Artiodactyla) Among Mammals: Increased Taxon Sampling Alters Interpretations of Key Fossils and Character Evolution

    Get PDF
    BACKGROUND: Integration of diverse data (molecules, fossils) provides the most robust test of the phylogeny of cetaceans. Positioning key fossils is critical for reconstructing the character change from life on land to life in the water. METHODOLOGY/PRINCIPAL FINDINGS: We reexamine relationships of critical extinct taxa that impact our understanding of the origin of Cetacea. We do this in the context of the largest total evidence analysis of morphological and molecular information for Artiodactyla (661 phenotypic characters and 46,587 molecular characters, coded for 33 extant and 48 extinct taxa). We score morphological data for Carnivoramorpha, Creodonta, Lipotyphla, and the raoellid artiodactylan Indohyus and concentrate on determining which fossils are positioned along stem lineages to major artiodactylan crown clades. Shortest trees place Cetacea within Artiodactyla and close to Indohyus, with Mesonychia outside of Artiodactyla. The relationships of Mesonychia and Indohyus are highly unstable, however--in trees only two steps longer than minimum length, Mesonychia falls inside Artiodactyla and displaces Indohyus from a position close to Cetacea. Trees based only on data that fossilize continue to show the classic arrangement of relationships within Artiodactyla with Cetacea grouping outside the clade, a signal incongruent with the molecular data that dominate the total evidence result. CONCLUSIONS/SIGNIFICANCE: Integration of new fossil material of Indohyus impacts placement of another extinct clade Mesonychia, pushing it much farther down the tree. The phylogenetic position of Indohyus suggests that the cetacean stem lineage included herbivorous and carnivorous aquatic species. We also conclude that extinct members of Cetancodonta (whales+hippopotamids) shared a derived ability to hear underwater sounds, even though several cetancodontans lack a pachyostotic auditory bulla. We revise the taxonomy of living and extinct artiodactylans and propose explicit node and stem-based definitions for the ingroup

    A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cetacea (dolphins, porpoises, and whales) is a clade of aquatic species that includes the most massive, deepest diving, and largest brained mammals. Understanding the temporal pattern of diversification in the group as well as the evolution of cetacean anatomy and behavior requires a robust and well-resolved phylogenetic hypothesis. Although a large body of molecular data has accumulated over the past 20 years, DNA sequences of cetaceans have not been directly integrated with the rich, cetacean fossil record to reconcile discrepancies among molecular and morphological characters.</p> <p>Results</p> <p>We combined new nuclear DNA sequences, including segments of six genes (~2800 basepairs) from the functionally extinct Yangtze River dolphin, with an expanded morphological matrix and published genomic data. Diverse analyses of these data resolved the relationships of 74 taxa that represent all extant families and 11 extinct families of Cetacea. The resulting supermatrix (61,155 characters) and its sub-partitions were analyzed using parsimony methods. Bayesian and maximum likelihood (ML) searches were conducted on the molecular partition, and a molecular scaffold obtained from these searches was used to constrain a parsimony search of the morphological partition. Based on analysis of the supermatrix and model-based analyses of the molecular partition, we found overwhelming support for 15 extant clades. When extinct taxa are included, we recovered trees that are significantly correlated with the fossil record. These trees were used to reconstruct the timing of cetacean diversification and the evolution of characters shared by "river dolphins," a non-monophyletic set of species according to all of our phylogenetic analyses.</p> <p>Conclusions</p> <p>The parsimony analysis of the supermatrix and the analysis of morphology constrained to fit the ML/Bayesian molecular tree yielded broadly congruent phylogenetic hypotheses. In trees from both analyses, all Oligocene taxa included in our study fell outside crown Mysticeti and crown Odontoceti, suggesting that these two clades radiated in the late Oligocene or later, contra some recent molecular clock studies. Our trees also imply that many character states shared by river dolphins evolved in their oceanic ancestors, contradicting the hypothesis that these characters are convergent adaptations to fluvial habitats.</p

    Complete Ichthyornis skull illuminates mosaic assembly of the avian head

    Get PDF
    The skull of living birds is greatly modified from the condition found in their dinosaurian antecedents. Bird skulls have an enlarged, toothless premaxillary beak and an intricate kinetic system that includes a mobile palate and jaw suspensorium. The expanded avian neurocranium protects an enlarged brain and is flanked by reduced jaw adductor muscles. However, the order of appearance of these features and the nature of their earliest manifestations remain unknown. The Late Cretaceous toothed bird Ichthyornis dispar sits in a pivotal phylogenetic position outside living groups: it is close to the extant avian radiation but retains numerous ancestral characters 1-3. Although its evolutionary importance continues to be affirmed 3-8, no substantial new cranial material of I. dispar has been described beyond incomplete remains recovered in the 1870s. Jurassic and Cretaceous Lagerstatten have yielded important avialan fossils, but their skulls are typically crushed and distorted 9. Here we report four three-dimensionally preserved specimens of I. dispar- including an unusually complete skull-as well as two previously overlooked elements from the Yale Peabody Museum holotype, YPM 1450. We used these specimens to generate a nearly complete three-dimensional reconstruction of the I. dispar skull using highresolution computed tomography. Our study reveals that I. dispar had a transitional beak-small, lacking a palatal shelf and restricted to the tips of the jaws-coupled with a kinetic system similar to that of living birds. The feeding apparatus of extant birds therefore evolved earlier than previously thought and its components were functionally and developmentally coordinated. The brain was relatively modern, but the temporal region was unexpectedly dinosaurian: it retained a large adductor chamber bounded dorsally by substantial bony remnants of the ancestral reptilian upper temporal fenestra. This combination of features documents that important attributes of the avian brain and palate evolved before the reduction of jaw musculature and the full transformation of the beak. </p
    • 

    corecore