325 research outputs found

    Explosive component acceptance tester using laser interferometer technology

    Get PDF
    Acceptance testing of explosive components requires a reliable and simple to use testing method that can discern less than optimal performance. For hot-wire detonators, traditional techniques use dent blocks or photographic diagnostic methods. More complicated approaches are avoided because of their inherent problems with setup and maintenance. A recently developed tester is based on using a laser interferometer to measure the velocity of flying plates accelerated by explosively actuated detonators. Unlike ordinary interferometers that monitor displacement of the test article, this device measures velocity directly and is commonly used with non-spectral surfaces. Most often referred to as the VISAR technique (Velocity Interferometer System for Any Reflecting Surface), it has become the most widely-accepted choice for accurate measurement of velocity in the range greater than 1 mm/micro-s. Traditional VISAR devices require extensive setup and adjustment and therefore are unacceptable in a production-testing environment. This paper describes a new VISAR approach which requires virtually no adjustments, yet provides data with accuracy comparable to the more complicated systems. The device, termed the Fixed-Cavity VISAR, is currently being developed to serve as a product verification tool for hot-wire detonators and slappers. An extensive data acquisition and analysis computer code was also created to automate the manipulation of raw data into final results

    Inclusion of Enclosed Hydration Effects in the Binding Free Energy Estimation of Dopamine D3 Receptor Complexes

    Full text link
    Confined hydration and conformational flexibility are some of the challenges encountered for the rational design of selective antagonists of G-protein coupled receptors. We present a set of C3-substituted (-)-stepholidine derivatives as potent binders of the dopamine D3 receptor. The compounds are characterized biochemically, as well as by computer modeling using a novel molecular dynamics-based alchemical binding free energy approach which incorporates the effect of the displacement of enclosed water molecules from the binding site. The free energy of displacement of specific hydration sites is obtained using the Hydration Site Analysis method with explicit solvation. This work underscores the critical role of confined hydration and conformational reorganization in the molecular recognition mechanism of dopamine receptors and illustrates the potential of binding free energy models to represent these key phenomena.Comment: This is the first report of using enclosed hydration in estimating binding free energies of protein-ligand complexes using implicit solvatio

    Alien Registration- Wickstrom, Claus W. (New Sweden, Aroostook County)

    Get PDF
    https://digitalmaine.com/alien_docs/34258/thumbnail.jp

    Hsp27 anti-sense oligonucleotides sensitize the microtubular cytoskeleton of Chinese hamster ovary cells grown at low pH to 42 degrees C-induced reorganization

    Get PDF
    Chinese hamster ovary (CHO) cells maintained in vitro at pH 6.7 were used to model cells in the acidic environment of tumours. CHO cells grown at pH 6.7 develop thermotolerance during 42 degrees C heating at pH 6.7 and their cytoskeletal systems are resistant to 42 degrees C-induced perinuclear collapse. Hsp27 levels are elevated in cells grown at pH 6.7 and are further induced during 42 degrees C heating, while Hsp70 levels remain low or undetectable, suggesting that Hsp27 is responsible for some of the novel characteristics of these cells. An anti-sense oligonucleotide strategy was used to test the importance of Hsp27 by lowering heat-induced levels of the protein. The response of the microtubular cytoskeleton to heat was used as an endpoint to assess the effectiveness of the anti-sense strategy. Treatment with anti-sense oligonucleotides prevented the heat-induced increase of Hsp27 levels measured immediately following heat. Treatment with anti-sense oligonucleotides also sensitized the cytoskeleton of cells grown at low pH to heat-induced perinuclear collapse. However, cytoskeletal collapse was not evident in cells grown at pH 6.7 and treated with 4-nt mismatch oligonucleotides or in control cells maintained and heated at pH 6.7. The cytoskeleton collapsed around the nucleus in cells cultured and heated at pH 7.3. These results confirm that over-expression of Hsp27 confers heat protection to the microtubular cytoskeleton in CHO cells grown at low pH

    Atypical periosteal osteoid osteoma: a case report

    Get PDF
    Osteoid osteoma is a benign osteoblastic tumor usually seen in adolescent and young males. In the paediatric age group, since the history may be difficult to elicit, there are often problems in early diagnosis. The author reports an unusual presentation of osteoid osteoma in a ten-year-old girl, which could not be diagnosed by conventional X-rays and CT scan

    Coordinate control of cell cycle regulatory genes in zebrafish development tested by cyclin D1 knockdown with morpholino phosphorodiamidates and hydroxyprolyl-phosphono peptide nucleic acids

    Get PDF
    During early zebrafish (Danio rerio) development zygotic transcription does not begin until the mid-blastula transition (MBT) ∼3 h after fertilization. MBT demarcates transition from synchronous short cell cycles of S and M phases exclusively to full cycles encompassing G(1) and G(2) phases. Transcriptional profiling and RT–PCR analyses during these phases enabled us to determine that this shift corresponds to decreased transcript levels of S/M phase cell cycle control genes (e.g. ccna2, ccnb1, ccnb2 and ccne) and increased transcript levels of ccnd1, encoding cyclin D1, and orthologs of p21 (p21-like) and retinoblastoma (Rb-like 1). To investigate the regulation of this process further, the translation of ccnd1 mRNA, a G(1)/S checkpoint control element, was impaired by microinjection of ccnd1-specific morpholino phosphorodiamidate (MO) 20mer or hydroxyprolyl-phosphono peptide nucleic acid (HypNA-pPNA) 16mer antisense oligonucleotides. The resulting downregulation of cyclin D1 protein resulted in microophthalmia and microcephaly, but not lethality. The phenotypes were not seen with 3-mismatch MO 20mers or 1-mismatch HypNA-pPNA 16mers, and were rescued by an exogenous ccnd1 mRNA construct with five mismatches. Collectively, these results indicate that transcription of key molecular determinants of asynchronous cell cycle control in zebrafish embryos commences at MBT and that the reduction of cyclin D1 expression compromises zebrafish eye and head development

    International Consensus Recommendations for the Treatment of Pediatric NMDAR Antibody Encephalitis.

    Get PDF
    OBJECTIVE: To create an international consensus treatment recommendation for pediatric NMDA receptor antibody encephalitis (NMDARE). METHODS: After selection of a panel of 27 experts with representation from all continents, a 2-step Delphi method was adopted to develop consensus on relevant treatment regimens and statements, along with key definitions in pediatric NMDARE (disease severity, failure to improve, and relapse). Finally, an online face-to-face meeting was held to reach consensus (defined as ≥75% agreement). RESULTS: Corticosteroids are recommended in all children with NMDARE (pulsed IV preferred), with additional IV immunoglobulin or plasma exchange in severe patients. Prolonged first-line immunotherapy can be offered for up to 3-12 months (oral corticosteroids or monthly IV corticosteroids/immunoglobulin), dependent on disease severity. Second-line treatments are recommended for cases refractory to first-line therapies (rituximab preferred over cyclophosphamide) and should be considered about 2 weeks after first-line initiation. Further immunotherapies for refractory disease 1-3 months after second-line initiation include another second-line treatment (such as cyclophosphamide) and escalation to tocilizumab. Maintenance immune suppression beyond 6 months (such as rituximab redosing or mycophenolate mofetil) is generally not required, except for patients with a more severe course or prolonged impairments and hospitalization. For patients with relapsing disease, second-line and prolonged maintenance therapy should be considered. The treatment of NMDARE following herpes simplex encephalitis should be similar to idiopathic NMDARE. Broad guidance is provided for the total treatment duration (first line, second line, and maintenance), which is dictated by the severity and clinical course (i.e., median 3, 9 and 18 months in the best, average, and worst responders, respectively). Recommendations on the timing of oncologic searches are provided. CONCLUSION: These international consensus recommendations for the management of pediatric NMDARE aim to standardize the treatment and provide practical guidance for clinicians, rather than absolute rules. A similar recommendation could be applicable to adult patients

    Distinguishing Binders from False Positives by Free Energy Calculations: Fragment Screening Against the Flap Site of HIV Protease

    Full text link
    Molecular docking is a powerful tool used in drug discovery and structural biology for predicting the structures of ligand–receptor complexes. However, the accuracy of docking calculations can be limited by factors such as the neglect of protein reorganization in the scoring function; as a result, ligand screening can produce a high rate of false positive hits. Although absolute binding free energy methods still have difficulty in accurately rank-ordering binders, we believe that they can be fruitfully employed to distinguish binders from nonbinders and reduce the false positive rate. Here we study a set of ligands that dock favorably to a newly discovered, potentially allosteric site on the flap of HIV-1 protease. Fragment binding to this site stabilizes a closed form of protease, which could be exploited for the design of allosteric inhibitors. Twenty-three top-ranked protein–ligand complexes from AutoDock were subject to the free energy screening using two methods, the recently developed binding energy analysis method (BEDAM) and the standard double decoupling method (DDM). Free energy calculations correctly identified most of the false positives (≥83%) and recovered all the confirmed binders. The results show a gap averaging ≥3.7 kcal/mol, separating the binders and the false positives. We present a formula that decomposes the binding free energy into contributions from the receptor conformational macrostates, which provides insights into the roles of different binding modes. Our binding free energy component analysis further suggests that improving the treatment for the desolvation penalty associated with the unfulfilled polar groups could reduce the rate of false positive hits in docking. The current study demonstrates that the combination of docking with free energy methods can be very useful for more accurate ligand screening against valuable drug targets

    Evaluating Molecular Mechanical Potentials for Helical Peptides and Proteins

    Get PDF
    Multiple variants of the AMBER all-atom force field were quantitatively evaluated with respect to their ability to accurately characterize helix-coil equilibria in explicit solvent simulations. Using a global distributed computing network, absolute conformational convergence was achieved for large ensembles of the capped A21 and Fs helical peptides. Further assessment of these AMBER variants was conducted via simulations of a flexible 164-residue five-helix-bundle protein, apolipophorin-III, on the 100 ns timescale. Of the contemporary potentials that had not been assessed previously, the AMBER-99SB force field showed significant helix-destabilizing tendencies, with beta bridge formation occurring in helical peptides, and unfolding of apolipophorin-III occurring on the tens of nanoseconds timescale. The AMBER-03 force field, while showing adequate helical propensities for both peptides and stabilizing apolipophorin-III, (i) predicts an unexpected decrease in helicity with ALA→ARG+ substitution, (ii) lacks experimentally observed 310 helical content, and (iii) deviates strongly from average apolipophorin-III NMR structural properties. As is observed for AMBER-99SB, AMBER-03 significantly overweighs the contribution of extended and polyproline backbone configurations to the conformational equilibrium. In contrast, the AMBER-99φ force field, which was previously shown to best reproduce experimental measurements of the helix-coil transition in model helical peptides, adequately stabilizes apolipophorin-III and yields both an average gyration radius and polar solvent exposed surface area that are in excellent agreement with the NMR ensemble
    • …
    corecore