84 research outputs found

    Expanding the Vector Control Toolbox for Malaria Elimination: A Systematic Review of the Evidence.

    Get PDF
    Additional vector control tools (VCTs) are needed to supplement insecticide-treated nets (ITNs) and indoor residual spraying (IRS) to achieve malaria elimination in many settings. To identify options for expanding the malaria vector control toolbox, we conducted a systematic review of the availability and quality of the evidence for 21 malaria VCTs, excluding ITNs and IRS. Six electronic databases and grey literature sources were searched from January 1, 1980 to September 28, 2015 to identify systematic reviews, Phase I-IV studies, and observational studies that measured the effect of malaria VCTs on epidemiological or entomological outcomes across any age groups in all malaria-endemic settings. Eligible studies were summarized qualitatively, with quality and risk of bias assessments undertaken where possible. Of 17,912 studies screened, 155 were eligible for inclusion and were included in a qualitative synthesis. Across the 21 VCTs, we found considerable heterogeneity in the volume and quality of evidence, with 7 VCTs currently supported by at least one Phase III community-level evaluation measuring parasitologically confirmed malaria incidence or infection prevalence (insecticide-treated clothing and blankets, insecticide-treated hammocks, insecticide-treated livestock, larval source management (LSM), mosquito-proofed housing, spatial repellents, and topical repellents). The remaining VCTs were supported by one or more Phase II (n=13) or Phase I evaluation (n=1). Overall the quality of the evidence base remains greatest for LSM and topical repellents, relative to the other VCTs evaluated, although existing evidence indicates that topical repellents are unlikely to provide effective population-level protection against malaria. Despite substantial gaps in the supporting evidence, several VCTs may be promising supplements to ITNs and IRS in appropriate settings. Strengthening operational capacity and research to implement underutilized VCTs, such as LSM and mosquito-proofed housing, using an adaptive, learning-by-doing approach, while expanding the evidence base for promising supplementary VCTs that are locally tailored, should be considered central to global malaria elimination efforts

    Nets, Spray or Both? The Effectiveness of Insecticide-Treated Nets and Indoor Residual Spraying in Reducing Malaria Morbidity and Child Mortality in sub-Saharan Africa.

    Get PDF
    Malaria control programmes currently face the challenge of maintaining, as well as accelerating, the progress made against malaria with fewer resources and uncertain funding. There is a critical need to determine what combination of malaria interventions confers the greatest protection against malaria morbidity and child mortality under routine conditions. This study assesses intervention effectiveness experienced by children under the age of five exposed to both insecticide-treated nets (ITNs) and indoor residual spraying (IRS), as compared to each intervention alone, based on nationally representative survey data collected from 17 countries in sub-Saharan Africa. Living in households with both ITNs and IRS was associated with a significant risk reduction against parasitaemia in medium and high transmission areas, 53% (95% CI 37% to 67%) and 31% (95% CI 11% to 47%) respectively. For medium transmission areas, an additional 36% (95% CI 7% to 53%) protection was garnered by having both interventions compared with exposure to only ITNs or only IRS. Having both ITNs and IRS was not significantly more protective against parasitaemia than either intervention alone in low and high malaria transmission areas. In rural and urban areas, exposure to both interventions provided significant protection against parasitaemia, 57% (95% CI 48% to 65%) and 39% (95% CI 10% to 61%) respectively; however, this effect was not significantly greater than having a singular intervention. Statistically, risk for all-cause child mortality was not significantly reduced by having both ITNs and IRS, and no additional protectiveness was detected for having dual intervention coverage over a singular intervention. These findings suggest that greater reductions in malaria morbidity and health gains for children may be achieved with ITNs and IRS combined beyond the protection offered by IRS or ITNs alone

    Towards malaria elimination - a new thematic series

    Get PDF
    The launch of a new thematic series of Malaria Journal -- "Towards malaria elimination" -- creates the forum that allows carrying scientific evidence on how to achieve malaria elimination in specific endemic settings and conditions into the circles of scientists, public health specialists, national and global programme managers, funders and decision makers

    Efficacy of artesunate-amodiaquine and artemether-lumefantrine fixed-dose combinations for the treatment of uncomplicated Plasmodium falciparum malaria among children aged six to 59 months in Nimba County, Liberia: an open-label randomized non-inferiority trial.

    Get PDF
    Prospective efficacy monitoring of anti-malarial treatments is imperative for timely detection of resistance development. The in vivo efficacy of artesunate-amodiaquine (ASAQ) fixed-dose combination (FDC) was compared to that of artemether-lumefantrine (AL) among children aged six to 59 months in Nimba County, Liberia, where Plasmodium falciparum malaria is endemic and efficacy data are scarce

    Importance of factors determining the effective lifetime of a mass, long-lasting, insecticidal net distribution: a sensitivity analysis

    Get PDF
    ABSTRACT: BACKGROUND: Long-lasting insecticidal nets (LLINs) reduce malaria transmission by protecting individuals from infectious bites, and by reducing mosquito survival. In recent years, millions of LLINs have been distributed across sub-Saharan Africa (SSA). Over time, LLINs decay physically and chemically and are destroyed, making repeated interventions necessary to prevent a resurgence of malaria. Because its effects on transmission are important (more so than the effects of individual protection), estimates of the lifetime of mass distribution rounds should be based on the effective length of epidemiological protection. METHODS: Simulation models, parameterised using available field data, were used to analyse how the distribution's effective lifetime depends on the transmission setting and on LLIN characteristics. Factors considered were the pre-intervention transmission level, initial coverage, net attrition, and both physical and chemical decay. An ensemble of 14 stochastic individual-based model variants for malaria in humans was used, combined with a deterministic model for malaria in mosquitoes. RESULTS: The effective lifetime was most sensitive to the pre-intervention transmission level, with a lifetime of almost 10 years at an entomological inoculation rate of two infectious bites per adult per annum (ibpapa), but of little more than 2 years at 256 ibpapa. The LLIN attrition rate and the insecticide decay rate were the next most important parameters. The lifetime was surprisingly insensitive to physical decay parameters, but this could change as physical integrity gains importance with the emergence and spread of pyrethroid resistance. CONCLUSIONS: The strong dependency of the effective lifetime on the pre-intervention transmission level indicated that the required distribution frequency may vary more with the local entomological situation than with LLIN quality or the characteristics of the distribution system. This highlights the need for malaria monitoring both before and during intervention programmes, particularly since there are likely to be strong variations between years and over short distances. The majority of SSA's population falls into exposure categories where the lifetime is relatively long, but because exposure estimates are highly uncertain, it is necessary to consider subsequent interventions before the end of the expected effective lifetime based on an imprecise transmission measur

    Evidence for a useful life of more than three years for a polyester-based long-lasting insecticidal mosquito net in Western Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Long-lasting insecticidal nets (LLIN) are now standard for the prevention of malaria. However, only products with recommendation for public use from the World Health Organization should be used and this evaluation includes the assessment of net effectiveness after three years of field use. Results for one of the polyester-based products, Interceptor<sup>® </sup>is presented.</p> <p>Methods</p> <p>In five villages, 190 LLIN and 90 nets conventionally treated with the insecticide alpha-cypermethrin at 25 mg/m<sup>2 </sup>were distributed randomly and used by the families. Following a baseline household survey a net survey was carried out every six months to capture use, washing habits and physical condition of the nets. Randomly selected nets were collected after 6, 12, 24, 36 and 42 months and tested for remaining insecticide content and ability to knock-down and kill malaria transmitting mosquitoes.</p> <p>Results</p> <p>During the three and a half years of observation only 16 nets were lost to follow-up resulting in an estimated attrition rate of 12% after three and 20/% after 3.5 years. Nets were used regularly and washed on average 1.5 times per year. After three and a half years 29% of the nets were still in good condition while 13% were seriously torn with no difference between the LLIN and control nets. The conventionally treated nets quickly lost insecticide and after 24 months only 7% of the original dose remained (1.6 mg/m<sup>2</sup>). Baseline median concentration of alpha-cypermethrin for LLIN was 194.5 mg/m<sup>2 </sup>or 97% of the target dose with between and within net variation of 11% and 4% respectively (relative standard deviation). On the LLIN 73.8 mg/m<sup>2 </sup>alpha-cypermethrin remained after three years of use and 56.2 mg/m<sup>2 </sup>after three and a half and 94% and 81% of the LLIN still had > 15 mg/m<sup>2 </sup>left respectively. Optimal effectiveness in bio-assays (≥95% 60 minute knock-down or ≥ 80% 24 hour mortality) was found in 83% of the sampled LLIN after three and 71% after three and a half years.</p> <p>Conclusions</p> <p>Under conditions in Western Uganda the tested long-lasting insecticidal net Interceptor<sup>® </sup>fulfilled the criteria for phase III of WHO evaluations and, based on preliminary criteria of the useful life, this product is estimated to last on average between three and four years.</p
    corecore