10 research outputs found

    Effects of X-ray dose on rhizosphere studies using X-ray computed tomography

    Get PDF
    X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored

    The Evolutionary Basis of Naturally Diverse Rice Leaves Anatomy

    Get PDF
    Rice contains genetically and ecologically diverse wild and cultivated species that show a wide variation in plant and leaf architecture. A systematic characterization of leaf anatomy is essential in understanding the dynamics behind such diversity. Therefore, leaf anatomies of 24 Oryza species spanning 11 genetically diverse rice genomes were studied in both lateral and longitudinal directions and possible evolutionary trends were examined. A significant inter-species variation in mesophyll cells, bundle sheath cells, and vein structure was observed, suggesting precise genetic control over these major rice leaf anatomical traits. Cellular dimensions, measured along three growth axes, were further combined proportionately to construct three-dimensional (3D) leaf anatomy models to compare the relative size and orientation of the major cell types present in a fully expanded leaf. A reconstruction of the ancestral leaf state revealed that the following are the major characteristics of recently evolved rice species: fewer veins, larger and laterally elongated mesophyll cells, with an increase in total mesophyll area and in bundle sheath cell number. A huge diversity in leaf anatomy within wild and domesticated rice species has been portrayed in this study, on an evolutionary context, predicting a two-pronged evolutionary pathway leading to the ‘sativa leaf type’ that we see today in domesticated species

    Investigating the microstructure of plant leaves in 3D with lab-based X-ray Computed Tomography

    Get PDF
    Background Leaf cellular architecture plays an important role in setting limits for carbon assimilation and, thus, photosynthetic performance. However, the low density, fine structure, and sensitivity to desiccation of plant tissue has presented challenges to its quantification. Classical methods of tissue fixation and embedding prior to 2D microscopy of sections is both laborious and susceptible to artefacts that can skew the values obtained. Here we report an image analysis pipeline that provides quantitative descriptors of plant leaf intercellular airspace using lab-based X-ray Computed Tomography (microCT). We demonstrate successful visualisation and quantification of differences in leaf intercellular airspace in 3D for a range of species (including both dicots and monocots) and provide a comparison with a standard 2D analysis of leaf sections. Results We used the microCT image pipeline to obtain estimates of leaf porosity and mesophyll exposed surface area (Smes) for three dicot species (Arabidopsis, tomato and pea) and three monocot grasses (barley, oat and rice). The imaging pipeline consisted of (1) a masking operation to remove the background airspace surrounding the leaf, (2) segmentation by an automated threshold in ImageJ and then (3) quantification of the extracted pores using the ImageJ ‘Analyze Particles’ tool. Arabidopsis had the highest porosity and lowest Smes for the dicot species whereas barley had the highest porosity and the highest Smes for the grass species. Comparison of porosity and Smes estimates from 3D microCT analysis and 2D analysis of sections indicates that both methods provide a comparable estimate of porosity but the 2D method may underestimate Smes by almost 50%. A deeper study of porosity revealed similarities and differences in the asymmetric distribution of airspace between the species analysed. Conclusions Our results demonstrate the utility of high resolution imaging of leaf intercellular airspace networks by lab-based microCT and provide quantitative data on descriptors of leaf cellular architecture. They indicate there is a range of porosity and Smes values in different species and that there is not a simple relationship between these parameters, suggesting the importance of cell size, shape and packing in the determination of cellular parameters proposed to influence leaf photosynthetic performance

    Interchangeable effects of gibberellic acid and temperature on embryo growth, seed germination and epicotyl emergence in Ribes multiflorum ssp. sandalioticum (Grossulariaceae)

    Get PDF
    Morphophysiological dormancy was investigated in seeds of Ribes multiflorum Kitex Roem et Schult. ssp. sandalioticum Arrigoni, a rare mountain species endemic to Sardinia (Italy). There were no differences in imbibition rates between intact and scarified seeds, suggesting a lack of physical dormancy, while methylene blue solution (0.5%) highlighted a preferential pathway for solution entrance through the raphe. Embryos were small at seed dispersal, with an initial embryo:seed ratio (E:S)of ca. 0.2 (embryo length, ca. 0.5 mm), whereas the critical E:S ratio for germination was three times longer (ca. 0.6). Gibberellic acid (GA3, 250 mgÆl)1) and warm stratification (25 C for 3 months) followed by low temperature (&lt;15 C) enhanced embryo growth rate (maximum of ca. 0.04 mmÆday)1at 10 C) and subsequent seed germination (radicle emergence; ca. 80% at 10 C). Low germination occurred at warmer temperatures, and cold stratification (5 C for 3 months) induced secondary dormancy. After radicle emergence, epicotyl emergence was delayed for ca.2 months for seeds from three different populations. Mean time of epicotyl emergence was affected by GA3. Seeds of this species showed non-deep simple (root) -non-deep simple (epicotyl) morphophysiological dormancy, highlighting a high synchronisation with Mediterranean seasonality in all the investigated populations

    Dependency of seed dormancy types on embryo traits and environmental conditions in Ribes species

    No full text
    The hypothesis that seed dormancy may be dependent on environmental conditions and seed morphological traits was tested for six Ribes species, across an altitudinal gradient of 1300 m and a longitudinal separation of 120°. Embryo measurements and seed germination experiments were conducted for R. alpinum L., R. hudsonianum Richardson var. petiolare (Douglas) Jancz., R. nevadaense Kellogg, R. roezlii Regel var. cruentum (Greene) Rehder and R. speciosum Pursh, and data taken from the literature for R. multiflorum Kit. ex Schult. ssp. sandalioticum Arrigoni. Germination was compared with seed viability to reveal proportional seed dormancy, which was then correlated to seed/embryo morphological traits and these traits related to the seed provenance environment. The embryos of all the investigated species are linear underdeveloped and all had a morphological component of seed dormancy (MD). Seeds of R. roezlii, R. hudsonianum and R. nevadaense required a temperature and/or hormone pre-treatment in order to germinate, highlighting morphophysiological seed dormancy (MPD). Seed dormancy was found to be strongly negatively correlated with embryo length, but not with embryo to seed (E:S) ratio or seed mass. Initial embryo length was positively related to mean annual temperature. Seed dormancy in the investigated Ribes species could be quantified and predicted by the interaction of embryo traits and environmental conditions. This approach may be helpful in assessing and predicting seed dormancy in the Ribes genus and in other genera and families with underdeveloped embryos
    corecore