2,371 research outputs found

    Altered serological and cellular reactivity to H-2 antigens after target cell infection with vaccinia virus

    Get PDF
    MICE generate cytotoxic T lymphocytes (CTL) which are able to lyse virus infected target cells in vitro after infection with lymphocytic choriomeningitis virus (LCMV) and pox-viruses1−3. CTL kill syngeneic and semiallogenic infected cells but not allogenic infected targets. Target cell lysis in these systems seems to be restricted by H-2 antigens, especially by the K or D end of the major histocompatibility complex (MHC). In experiments where virus specific sensitised lymphocytes kill virus infected allogenic target cells4 the effector lymphocytes have not been characterised exactly. Recent investigations suggest that the active cell in this assay, at least in the measles infection, is a non-thymus derived cell (H. Kreth, personal communication). An H-2 restriction of cell mediated cytolysis (CMC) to trinitrophenol (TNP)-modified lymphocytes has also been described5. Zinkernagel and Doherty6 postulated that the CTL is directed against syngeneic H-2 antigens and viral antigens and they suggested an alteration of H-2 induced by the LCMV infection. Earlier7 we found a close topological relationship between H-2 antigens and the target antigen(s) responsible for CMC in the vaccinia system. Here we report experiments which were carried out to prove alteration of H-2 after infection of L-929 fibroblasts with vaccinia virus

    Mathematically gifted and talented learners: Theory and practice

    Get PDF
    This is an Author's Accepted Manuscript of an article published in International Journal of Mathematical Education in Science and Technology, 40(2), 213-228, 2009, copyright Taylor & Francis, available online at: http://www.tandfonline.com/10.1080/00207390802566907.There is growing recognition of the special needs of mathematically gifted learners. This article reviews policy developments and current research and theory on giftedness in mathematics. It includes a discussion of the nature of mathematical ability as well as the factors that make up giftedness in mathematics. The article is set in the context of current developments in Mathematics Education and Gifted Education in the UK and their implications for Science and Technology. It argues that early identification and appropriate provision for younger mathematically promising pupils capitalizes on an intellectual resource which could provide future mathematicans as well as specialists in Science or Technology. Drawing on a Vygotskian framework, it is suggested that the mathematically gifted require appropriate cognitive challenges as well as attitudinally and motivationally enhancing experiences. In the second half of this article we report on an initiative in which we worked with teachers to identify mathematically gifted pupils and to provide effective enrichment support for them, in a number of London Local Authorities. A number of significant issues are raised relating to the identification of mathematical talent, enrichment provision for students and teachers’ professional development

    Investigating hyper-vigilance for social threat of lonely children

    Get PDF
    The hypothesis that lonely children show hypervigilance for social threat was examined in a series of three studies that employed different methods including advanced eye-tracking technology. Hypervigilance for social threat was operationalized as hostility to ambiguously motivated social exclusion in a variation of the hostile attribution paradigm (Study 1), scores on the Children’s Rejection-Sensitivity Questionnaire (Study 2), and visual attention to socially rejecting stimuli (Study 3). The participants were 185 children (11 years-7 months to 12 years-6 months), 248 children (9 years-4 months to 11 years-8 months) and 140 children (8 years-10 months to 12 years-10 months) in the three studies, respectively. Regression analyses showed that, with depressive symptoms covaried, there were quadratic relations between loneliness and these different measures of hypervigilance to social threat. As hypothesized, only children in the upper range of loneliness demonstrated elevated hostility to ambiguously motivated social exclusion, higher scores on the rejection sensitivity questionnaire, and disengagement difficulties when viewing socially rejecting stimuli. We found that very lonely children are hypersensitive to social threat

    Task-related functional magnetic resonance imaging activations in patients with acute and subacute mild traumatic brain injury: A coordinate-based meta-analysis

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordTask-based functional magnetic resonance imaging (fMRI) has been used to examine neuroanatomical and functional changes following mild traumatic brain injury (mTBI). Prior studies have lacked consistency in identifying common regions of altered neural activity during cognitive tasks. This may be partly due to differences in task paradigm, patient heterogeneity, and methods of fMRI analysis. We conducted a meta-analysis using an activation likelihood estimation (ALE) method to identify regions of differential brain activation in patients with mTBI compared to healthy controls. We included experiments that performed scans from acute to subacute time points post-injury. The seven included studies recruited a total sample of 174 patients with mTBIs and 139 control participants. The results of our coordinate based meta-analysis revealed a single cluster of reduced activation within the right middle frontal gyrus (MFG) that differentiated mTBI from healthy controls. We conclude that the cognitive impairments in memory and attention typically reported in mTBI patients may be associated with a deficit in the right MFG, which impacts the recruitment of neural networks important for attentional control

    An Updated Algorithm for the Generation of Neutral Landscapes by Spectral Synthesis

    Get PDF
    Background: Patterns that arise from an ecological process can be driven as much from the landscape over which the process is run as it is by some intrinsic properties of the process itself. The disentanglement of these effects is aided if it possible to run models of the process over artificial landscapes with controllable spatial properties. A number of different methods for the generation of so-called ‘neutral landscapes’ have been developed to provide just such a tool. Of these methods, a particular class that simulate fractional Brownian motion have shown particular promise. The existing methods of simulating fractional Brownian motion suffer from a number of problems however: they are often not easily generalisable to an arbitrary number of dimensions and produce outputs that can exhibit some undesirable artefacts. Methodology: We describe here an updated algorithm for the generation of neutral landscapes by fractional Brownian motion that do not display such undesirable properties. Using Monte Carlo simulation we assess the anisotropic properties of landscapes generated using the new algorithm described in this paper and compare it against a popular benchmark algorithm. Conclusion/Significance: The results show that the existing algorithm creates landscapes with values strongly correlated in the diagonal direction and that the new algorithm presented here corrects this artefact. A number of extensions of the algorithm described here are also highlighted: we describe how the algorithm can be employed to generate landscapes that display different properties in different dimensions and how they can be combined with an environmental gradient to produce landscapes that combine environmental variation at the local and macro scales

    The plight of the sense-making ape

    Get PDF
    This is a selective review of the published literature on object-choice tasks, where participants use directional cues to find hidden objects. This literature comprises the efforts of researchers to make sense of the sense-making capacities of our nearest living relatives. This chapter is written to highlight some nonsensical conclusions that frequently emerge from this research. The data suggest that when apes are given approximately the same sense-making opportunities as we provide our children, then they will easily make sense of our social signals. The ubiquity of nonsensical contemporary scientific claims to the effect that humans are essentially--or inherently--more capable than other great apes in the understanding of simple directional cues is, itself, a testament to the power of preconceived ideas on human perception

    A Real-Time Quantitative Analysis of Atmospheric Contributions of Hydrogen to Weld Arc Plasmas

    Get PDF
    Hydrogen contamination of weldments, particularly in the welded joints of high strength steels, can cause significant reductions in weld integrity, often resulting in failure of the joint. Inspection and repair of hydrogen assisted cracks in weldments is both costly and time consuming, thus real-time methods of detecting hydrogen levels during welding are essential. Analytical emission spectroscopy is a promising method of weld analysis, providing quantitative information in real time about the amount of hydrogen in the arc atmosphere

    Genetic noise control via protein oligomerization

    Get PDF
    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Here we have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise

    Adaptation or constraint? Reference-dependent scatter in honey bee dances

    Get PDF
    The waggle dance of the honey bee is used to recruit nest mates to a resource. Dancer bees, however, may indicate many directions within a single dance bout; we show that this scatter in honey bee dances is strongly dependent on the sensory modality used to determine a reference angle in the dance. Dances with a visual reference are more precise than those with a gravity reference. This finding undermines the idea that scatter is introduced into dances, which the bees could perform more precisely, in order to spread recruits out over resource patches. It also calls into question reported interspecific differences that had been interpreted as adaptations of the dance to different habitats. Our results support a non-adaptive hypothesis: that dance scatter results from sensory and performance constraints, rather than modulation of the scatter by the dancing bee. However, an alternative adaptive hypothesis cannot be ruled out

    Embodied perspective-taking indicated by selective disruption from aberrant self motion

    Get PDF
    Spatial perspective-taking that involves imagined changes in one’s spatial orientation is facilitated by vestibular stimulation inducing a congruent sensation of self-motion. We examined further the role of vestibular resources in perspective-taking by evaluating whether aberrant and conflicting vestibular stimulation impaired perspective-taking performance. Participants (N = 39) undertook either an “own body transformation” (OBT)task, requiring speeded spatial judgments made from the perspective of a schematic figure, or a control task requiring reconfiguration of spatial mappings from one’s own visuo-spatial perspective. These tasks were performed both without and with vestibular stimulation by whole-body Coriolis motion, according to a repeated measures design, balanced for order. Vestibular stimulation was found to impair performance during the first minute post stimulus relative to the stationary condition. This disruption was task-specific, affecting only the OBT task and not the control task, and dissipated by the second minute post-stimulus. Our experiment thus demonstrates selective temporary impairment of perspective-taking from aberrant vestibular stimulation, implying that uncompromised vestibular resources are necessary for efficient perspective-taking. This finding provides evidence for an embodied mechanism for perspective-taking whereby vestibular input contributes to multisensory processing underlying bodily and social cognition. Ultimately, this knowledge may contribute to the design of interventions that help patients suffering sudden vertigo adapt to the cognitive difficulties caused by aberrant vestibular stimulation
    corecore