444 research outputs found

    Sub-Planck spots of Schroedinger cats and quantum decoherence

    Get PDF
    Heisenberg's principle1^1 states that the product of uncertainties of position and momentum should be no less than Planck's constant \hbar. This is usually taken to imply that phase space structures associated with sub-Planck (\ll \hbar) scales do not exist, or, at the very least, that they do not matter. I show that this deeply ingrained prejudice is false: Non-local "Schr\"odinger cat" states of quantum systems confined to phase space volume characterized by `the classical action' AA \gg \hbar develop spotty structure on scales corresponding to sub-Planck a=2/Aa = \hbar^2 / A \ll \hbar. Such structures arise especially quickly in quantum versions of classically chaotic systems (such as gases, modelled by chaotic scattering of molecules), that are driven into nonlocal Schr\"odinger cat -- like superpositions by the quantum manifestations of the exponential sensitivity to perturbations2^2. Most importantly, these sub-Planck scales are physically significant: aa determines sensitivity of a quantum system (or of a quantum environment) to perturbations. Therefore sub-Planck aa controls the effectiveness of decoherence and einselection caused by the environment38^{3-8}. It may also be relevant in setting limits on sensitivity of Schr\"odinger cats used as detectors.Comment: Published in Nature 412, 712-717 (2001

    Catheter Balloon Adjustment of the Pulmonary Artery Band: Feasibility and Safety

    Get PDF
    The study aimed to assess the feasibility and safety of increasing pulmonary artery band (PAB) diameter by catheter-based PAB balloon dilation (PABBD). Eight dilations were performed between October 2006 and December 2008. Hemoclips were used to fix PABs surgically in a procedure designed to permit progressive clip dislodgment in a controlled manner. The PABBD resulted in gradual band loosening until the desired physiologic state was achieved. At time of PABBD, the patients had a mean age of 6 months (range 3–14 months) and a mean weight of 5 kg (range 2.6–7.3 kg). The median time from PAB placement until PABBD was 4.5 months (range 1–9 months). The single-balloon technique was used in seven cases (serial dilations in 5 cases) and the double-balloon technique in one case. The PABBDs were successful for all the patients, who experienced a mean saturation increase of 75–89% (P = 0.01) (mean increase of 20%), a mean PAB gradient decrease from 69 to 36 mmHg (P = 0.002) (mean decrease of 49%), and a mean band site diameter increase from 4.1 to 6.1 mm (P = 0.01) (mean increase of 45%). The only complication was transient pulmonary edema in one patient. The PABBD procedure is a feasible and safe method for increasing pulmonary blood flow in a staged manner and may eliminate the need for surgical band removal in some cases

    Non-Disruptive Tactics of Suppression Are Superior in Countering Terrorism, Insurgency, and Financial Panics

    Get PDF
    BACKGROUND: Suppressing damaging aggregate behaviors such as insurgency, terrorism, and financial panics are important tasks of the state. Each outcome of these aggregate behaviors is an emergent property of a system in which each individual's action depends on a subset of others' actions, given by each individual's network of interactions. Yet there are few explicit comparisons of strategies for suppression, and none that fully incorporate the interdependence of individual behavior. METHODS AND FINDINGS: Here I show that suppression tactics that do not require the removal of individuals from networks of interactions are nearly always more effective than those that do. I find using simulation analysis of a general model of interdependent behavior that the degree to which such less disruptive suppression tactics are superior to more disruptive ones increases in the propensity of individuals to engage in the behavior in question. CONCLUSIONS: Thus, hearts-and-minds approaches are generally more effective than force in counterterrorism and counterinsurgency, and partial insurance is usually a better tactic than gag rules in quelling financial panics. Differences between suppression tactics are greater when individual incentives to support terrorist or insurgent groups, or susceptibilities to financial panic, are higher. These conclusions have utility for policy-makers seeking to end bloody conflicts and prevent financial panics. As the model also applies to mass protest, its conclusions provide insight as well into the likely effects of different suppression strategies undertaken by authoritarian regimes seeking to hold on to power in the face of mass movements seeking to end them

    Some size relationships in phytoflagellate motility

    Get PDF
    Data from the literature are used to assess some hypothesised adaptive advantages of the flagellate life form among phytoplankton. Possible advantages include increased nutrient uptake by movement through a homogeneous medium as opposed to exploitation of spatial hetrogeneity of the environment. Maximal migrational amplitudes and maximal swimming velocities of phytoflagellates were compared to body size. Both were found to increase with size. Relative amplitudes and relative velocities, however, were found to decrease with size. Hydrophysical considerations show that additional gain of nutrients by swimming through a homogeneous medium is only minimal for small flagellates at their attainable swimming velocities. It is suggested that exploitation of environmental heterogeneity in nutrient distribution may be one of the most important advantages for flagellates over coccoid algae

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Mathematical modeling of solid cancer growth with angiogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer arises when within a single cell multiple malfunctions of control systems occur, which are, broadly, the system that promote cell growth and the system that protect against erratic growth. Additional systems within the cell must be corrupted so that a cancer cell, to form a mass of any real size, produces substances that promote the growth of new blood vessels. Multiple mutations are required before a normal cell can become a cancer cell by corruption of multiple growth-promoting systems.</p> <p>Methods</p> <p>We develop a simple mathematical model to describe the solid cancer growth dynamics inducing angiogenesis in the absence of cancer controlling mechanisms.</p> <p>Results</p> <p>The initial conditions supplied to the dynamical system consist of a perturbation in form of pulse: The origin of cancer cells from normal cells of an organ of human body. Thresholds of interacting parameters were obtained from the steady states analysis. The existence of two equilibrium points determine the strong dependency of dynamical trajectories on the initial conditions. The thresholds can be used to control cancer.</p> <p>Conclusions</p> <p>Cancer can be settled in an organ if the following combination matches: better fitness of cancer cells, decrease in the efficiency of the repairing systems, increase in the capacity of sprouting from existing vascularization, and higher capacity of mounting up new vascularization. However, we show that cancer is rarely induced in organs (or tissues) displaying an efficient (numerically and functionally) reparative or regenerative mechanism.</p
    corecore