117 research outputs found
Identification of Mendelian inconsistencies between SNP and pedigree information of sibs
Background Using SNP genotypes to apply genomic selection in breeding programs is becoming common practice. Tools to edit and check the quality of genotype data are required. Checking for Mendelian inconsistencies makes it possible to identify animals for which pedigree information and genotype information are not in agreement. Methods Straightforward tests to detect Mendelian inconsistencies exist that count the number of opposing homozygous marker (e.g. SNP) genotypes between parent and offspring (PAR-OFF). Here, we develop two tests to identify Mendelian inconsistencies between sibs. The first test counts SNP with opposing homozygous genotypes between sib pairs (SIBCOUNT). The second test compares pedigree and SNP-based relationships (SIBREL). All tests iteratively remove animals based on decreasing numbers of inconsistent parents and offspring or sibs. The PAR-OFF test, followed by either SIB test, was applied to a dataset comprising 2,078 genotyped cows and 211 genotyped sires. Theoretical expectations for distributions of test statistics of all three tests were calculated and compared to empirically derived values. Type I and II error rates were calculated after applying the tests to the edited data, while Mendelian inconsistencies were introduced by permuting pedigree against genotype data for various proportions of animals. Results Both SIB tests identified animal pairs for which pedigree and genomic relationships could be considered as inconsistent by visual inspection of a scatter plot of pairwise pedigree and SNP-based relationships. After removal of 235 animals with the PAR-OFF test, SIBCOUNT (SIBREL) identified 18 (22) additional inconsistent animals. Seventeen animals were identified by both methods. The numbers of incorrectly deleted animals (Type I error), were equally low for both methods, while the numbers of incorrectly non-deleted animals (Type II error), were considerably higher for SIBREL compared to SIBCOUNT. Conclusions Tests to remove Mendelian inconsistencies between sibs should be preceded by a test for parent-offspring inconsistencies. This parent-offspring test should not only consider parent-offspring pairs based on pedigree data, but also those based on SNP information. Both SIB tests could identify pairs of sibs with Mendelian inconsistencies. Based on type I and II error rates, counting opposing homozygotes between sibs (SIBCOUNT) appears slightly more precise than comparing genomic and pedigree relationships (SIBREL) to detect Mendelian inconsistencies between sib
Estimating genetic diversity across the neutral genome with the use of dense marker maps
<p>Abstract</p> <p>Background</p> <p>With the advent of high throughput DNA typing, dense marker maps have become available to investigate genetic diversity on specific regions of the genome. The aim of this paper was to compare two marker based estimates of the genetic diversity in specific genomic regions lying in between markers: IBD-based genetic diversity and heterozygosity.</p> <p>Methods</p> <p>A computer simulated population was set up with individuals containing a single 1-Morgan chromosome and 1665 SNP markers and from this one, an additional population was produced with a lower marker density i.e. 166 SNP markers. For each marker interval based on adjacent markers, the genetic diversity was estimated either by IBD probabilities or heterozygosity. Estimates were compared to each other and to the true genetic diversity. The latter was calculated for a marker in the middle of each marker interval that was not used to estimate genetic diversity.</p> <p>Results</p> <p>The simulated population had an average minor allele frequency of 0.28 and an LD (r<sup>2</sup>) of 0.26, comparable to those of real livestock populations. Genetic diversities estimated by IBD probabilities and by heterozygosity were positively correlated, and correlations with the true genetic diversity were quite similar for the simulated population with a high marker density, both for specific regions (r = 0.19-0.20) and large regions (r = 0.61-0.64) over the genome. For the population with a lower marker density, the correlation with the true genetic diversity turned out to be higher for the IBD-based genetic diversity.</p> <p>Conclusions</p> <p>Genetic diversities of ungenotyped regions of the genome (i.e. between markers) estimated by IBD-based methods and heterozygosity give similar results for the simulated population with a high marker density. However, for a population with a lower marker density, the IBD-based method gives a better prediction, since variation and recombination between markers are missed with heterozygosity.</p
Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values
The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD) probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction
Allergen Micro-Bead Array for IgE Detection: A Feasibility Study Using Allergenic Molecules Tested on a Flexible Multiplex Flow Cytometric Immunoassay
Background: Allergies represent the most prevalent non infective diseases worldwide. Approaching IgE-mediated sensitizations improved much by adopting allergenic molecules instead of extracts, and by using the micro-technology for multiplex testing. Objective and Methods: To provide a proof-of-concept that a flow cytometric bead array is a feasible mean for the detection of specific IgE reactivity to allergenic molecules in a multiplex-like way. A flow cytometry Allergenic Moleculebased micro-bead Array system (ABA) was set by coupling allergenic molecules with commercially available micro-beads. Allergen specific polyclonal and monoclonal antibodies, as well as samples from 167 allergic patients, characterized by means of the ISAC microarray system, were used as means to show the feasibility of the ABA. Three hundred and thirty-six sera were tested for 1 or more of the 16 selected allergens, for a total number of 1,519 tests on each of the two systems. Results: Successful coupling was initially verified by detecting the binding of rabbit polyclonal IgG, mouse monoclonal, and pooled human IgE toward three allergens, namely nDer s 1, nPen m 1, and nPru p 3. The ABA assay showed to detect IgE t
Prevalence of Mistreatment or Belittlement among Medical Students – A Cross Sectional Survey at a Private Medical School in Karachi, Pakistan
Background: Mistreatment or belittlement of medical students either by faculty or fellow students has often been reported. Perception of mistreatment has also been associated with increased degree of psychological morbidity. There is a lack of such studies being conducted amongst the medical students of Pakistan. The aim of this study was to determine the prevalence and forms of perceived mistreatment and presence of mental health morbidity in a private medical school in Pakistan. Also, any association between mental health morbidity and mistreatment was to be identified. Methods: A cross sectional study was carried out on medical students from Aga Khan University Hospital, Karachi, Pakistan during the period of June-September 2007. A self administered questionnaire, adapted from Frank et al and Baldwin et al was distributed to a total of 350 students. The questionnaire consisted of three parts: the first dealing with the demographics of the population, the second concerning the various forms of mistreatment, while the third assessed the mental health of students using the General Health Questionnaire 12(GHQ12). Descriptive statistics were performed. The Chi-square test and Fisher\u27s exact tests were applied. Results: A total of 350 students were approached out of which 232 completed the questionnaire giving a response rate of 66.2%. Mistreatment was reported by 62.5% (145/232) of the respondents. Of these, 69.7% (83/145) were males and 54.9% (62/145) were females. There was a significant relationship between gender, year division, stress at medical school and possible use of drugs/alcohol and reported mistreatment but no statistical relationship was seen with psychiatric morbidity. The overall prevalence of psychological morbidity was 34.8% (77/221). Conclusion: This study suggests high prevalence of perceived mistreatment and psychological morbidity among Pakistani medical students. However, no association was found between these two aspects of medical student education. There is a need to bring about changes to make the medical education environment conducive to learning. Increased student feedback, support systems and guidance about progress throughout the year and the provision of adequate learning resources may provide help with resolving both of these issues
Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma
BACKGROUND: Prognosis of esophageal cancer is poor despite curative surgery. The chemokine receptor CXCR4 has been proposed to distinctly contribute to tumor growth, dissemination and local immune escape in a limited number of malignancies. The aim of our study was to evaluate the role of CXCR4 in tumor spread of esophageal cancer with a differentiated view of the two predominant histologic types – squamous cell and adenocarcinoma. METHODS: Esophageal cancer tissue samples were obtained from 102 consecutive patients undergoing esophageal resection for cancer with curative intent. The LSAB+ System was used to detect the protein CXCR4. Tumor samples were classified into two groups based on the homogeneous staining intensity. A cut-off between CXCR4w (= weak expression) and CXCR4s (= strong expression) was set at 1.5 (grouped 0 – 1.5 versus 2.0 – 3). Long-term survival rates were calculated using life tables and the Kaplan-Meier method. Using the Cox's proportional hazards analysis, a model of survival prediction was established. RESULTS: The overall expression rate for CXCR4 in esophageal squamous cell carcinoma was 94.1%. Subdividing these samples, CXCR4w was found in 54.9% and CXCR4s in 45.1%. In adenocarcinoma, an overall expression rate of 89.1% was detected with a weak intensitiy in 71.7% compared to strong staining in 29.3% (p = 0.066 squamous cell versus adenocarcinoma). The Cox's proportional hazards analysis identified the pM-category with a hazard ratio (HR) of 1.860 (95% CI: 1.014–3.414) (p = 0.045), the histologic tumor type (HR: 0.334; 95% CI: 0.180–0.618) (p = 0.0001) and the operative approach (transthoracic > transhiatal esophageal resection) (HR: 0.546; 95% CI: 0.324–0.920) (p = 0.023) as independent factors with a possible influence on the long-term prognosis in patients with esophageal carcinoma, whereas CXCR4 expression was statistically not significant (>0.05). CONCLUSION: Expression of the chemokine receptor CXCR4 in esophageal cancer is of major relevance in both histologic entities – squamous cell and adenocarcinoma. Though with lack of statistical significance, strong CXCR4 expression revealed a poorer long-term prognosis following curative esophagectomy in both histologic subtypes. Thus, the exact biological functions of CXCR4 in terms of tumor dissemination of esophageal cancer is yet undetermined. Inhibition of esophageal cancer progression by CXCR4 antagonists might be a promising therapeutic option in the future
Understanding the molecular determinants driving the immunological specificity of the protective pilus 2a backbone protein of Group B Streptococcus
The pilus 2a backbone protein (BP-2a) is one of the most structurally and functionally characterized components of a potential vaccine formulation against Group B Streptococcus. It is characterized by six main immunologically distinct allelic variants, each inducing variant-specific protection. To investigate the molecular determinants driving the variant immunogenic specificity of BP-2a, in terms of single residue contributions, we generated six monoclonal antibodies against a specific protein variant based on their capability to recognize the polymerized pili structure on the bacterial surface. Three mAbs were also able to induce complement-dependent opsonophagocytosis killing of live GBS and target the same linear epitope present in the structurally defined and immunodominant domain D3 of the protein. Molecular docking between the modelled scFv antibody sequences and the BP-2a crystal structure revealed the potential role at the binding interface of some non-conserved antigen residues. Mutagenesis analysis confirmed the necessity of a perfect balance between charges, size and polarity at the binding interface to obtain specific binding of mAbs to the protein antigen for a neutralizing response
Cervical intramedullary schwannoma: a case report and review of the literature
Intramedullary schwannomas unrelated with neurofibromatosis are uncommon tumors, but if correctly diagnosed and properly treated they may have a good prognosis
Integrative Analysis of Epigenetic Modulation in Melanoma Cell Response to Decitabine: Clinical Implications
Decitabine, an epigenetic modifier that reactivates genes otherwise suppressed by DNA promoter methylation, is effective for some, but not all cancer patients, especially those with solid tumors. It is commonly recognized that to overcome resistance and improve outcome, treatment should be guided by tumor biology, which includes genotype, epigenotype, and gene expression profile. We therefore took an integrative approach to better understand melanoma cell response to clinically relevant dose of decitabine and identify complementary targets for combined therapy. We employed eight different melanoma cell strains, determined their growth, apoptotic and DNA damage responses to increasing doses of decitabine, and chose a low, clinically relevant drug dose to perform whole-genome differential gene expression, bioinformatic analysis, and protein validation studies. The data ruled out the DNA damage response, demonstrated the involvement of p21Cip1 in a p53-independent manner, identified the TGFβ pathway genes CLU and TGFBI as markers of sensitivity to decitabine and revealed an effect on histone modification as part of decitabine-induced gene expression. Mutation analysis and knockdown by siRNA implicated activated β-catenin/MITF, but not BRAF, NRAS or PTEN mutations as a source for resistance. The importance of protein stability predicted from the results was validated by the synergistic effect of Bortezomib, a proteasome inhibitor, in enhancing the growth arrest of decitabine in otherwise resistant melanoma cells. Our integrative analysis show that improved therapy can be achieved by comprehensive analysis of cancer cells, identified biomarkers for patient's selection and monitoring response, as well as targets for improved combination therapy
- …