76 research outputs found

    Prenatal alcohol exposure triggers ceramide-induced apoptosis in neural crest-derived tissues concurrent with defective cranial development

    Get PDF
    Fetal alcohol syndrome (FAS) is caused by maternal alcohol consumption during pregnancy. The reason why specific embryonic tissues are sensitive toward ethanol is not understood. We found that in neural crest-derived cell (NCC) cultures from the first branchial arch of E10 mouse embryos, incubation with ethanol increases the number of apoptotic cells by fivefold. Apoptotic cells stain intensely for ceramide, suggesting that ceramide-induced apoptosis mediates ethanol damage to NCCs. Apoptosis is reduced by incubation with CDP-choline (citicoline), a precursor for the conversion of ceramide to sphingomyelin. Consistent with NCC cultures, ethanol intubation of pregnant mice results in ceramide elevation and increased apoptosis of NCCs in vivo. Ethanol also increases the protein level of prostate apoptosis response 4 (PAR-4), a sensitizer to ceramide-induced apoptosis. Prenatal ethanol exposure is concurrent with malformation of parietal bones in 20% of embryos at day E18. Meninges, a tissue complex derived from NCCs, is disrupted and generates reduced levels of TGF-β1, a growth factor critical for bone and brain development. Ethanol-induced apoptosis of NCCs leading to defects in the meninges may explain the simultaneous presence of cranial bone malformation and cognitive retardation in FAS. In addition, our data suggest that treatment with CDP-choline may alleviate the tissue damage caused by alcohol

    Photovoltaic restoration of sight with high visual acuity

    Get PDF
    Patients with retinal degeneration lose sight due to the gradual demise of photoreceptors. Electrical stimulation of surviving retinal neurons provides an alternative route for the delivery of visual information. We demonstrate that subretinal implants with 70-μm-wide photovoltaic pixels provide highly localized stimulation of retinal neurons in rats. The electrical receptive fields recorded in retinal ganglion cells were similar in size to the natural visual receptive fields. Similarly to normal vision, the retinal response to prosthetic stimulation exhibited flicker fusion at high frequencies, adaptation to static images and nonlinear spatial summation. In rats with retinal degeneration, these photovoltaic arrays elicited retinal responses with a spatial resolution of 64 ± 11 μm, corresponding to half of the normal visual acuity in healthy rats. The ease of implantation of these wireless and modular arrays, combined with their high resolution, opens the door to the functional restoration of sight in patients blinded by retinal degeneration

    Mammographic density and risk of breast cancer by age and tumor characteristics

    Get PDF
    Introduction: Understanding whether mammographic density (MD) is associated with all breast tumor subtypes and whether the strength of association varies by age is important for utilizing MD in risk models. Methods: Data were pooled from six studies including 3414 women with breast cancer and 7199 without who underwent screening mammography. Percent MD was assessed from digitized film-screen mammograms using a computer-assisted threshold technique. We used polytomous logistic regression to calculate breast cancer odds according to tumor type, histopathological characteristics, and receptor (estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER2)) status by age (51%) versus average density (11-25%). Women ages 2.1 cm) versus small tumors and positive versus negative lymph node status (P’s < 0.01). For women ages <55 years, there was a stronger association of MD with ER-negative breast cancer than ER-positive tumors compared to women ages 55–64 and ≥65 years (Page-interaction = 0.04). MD was positively associated with both HER2-negative and HER2-positive tumors within each age group. Conclusion: MD is strongly associated with all breast cancer subtypes, but particularly tumors of large size and positive lymph nodes across all ages, and ER-negative status among women ages <55 years, suggesting high MD may play an important role in tumor aggressiveness, especially in younger women

    Atopic dermatitis and vitamin D: facts and controversies

    Get PDF
    Patients with atopic dermatitis have genetically determined risk factors that affect the barrier function of the skin and immune responses that interact with environmental factors. Clinically, this results in an intensely pruriginous and inflamed skin that allows the penetration of irritants and allergens and predisposes patients to colonization and infection by microorganisms. Among the various etiological factors responsible for the increased prevalence of atopic diseases over the past few decades, the role of vitamin D has been emphasized. As the pathogenesis of AD involves a complex interplay of epidermal barrier dysfunction and dysregulated immune response, and vitamin D is involved in both processes, it is reasonable to expect that vitamin D's status could be associated with atopic dermatitis' risk or severity. Such association is suggested by epidemiological and experimental data. in this review, we will discuss the evidence for and against this controversial relationship, emphasizing the possible etiopathogenic mechanisms involved.Univ Brasilia UNB, Brasilia, DF, BrazilFed Dist Hlth State Dept SES DF, Brasilia, DF, BrazilUniv Brasilia HUB UNB, Brasilia Univ Hosp, Brasilia, DF, BrazilSão Paulo Fed Univ UNIFESP, Brasilia, DF, BrazilSão Paulo Fed Univ UNIFESP, Brasilia, DF, BrazilWeb of Scienc

    Human Neural Stem Cells Differentiate and Promote Locomotor Recovery in an Early Chronic Spinal coRd Injury NOD-scid Mouse Model

    Get PDF
    Traumatic spinal cord injury (SCI) results in partial or complete paralysis and is characterized by a loss of neurons and oligodendrocytes, axonal injury, and demyelination/dysmyelination of spared axons. Approximately 1,250,000 individuals have chronic SCI in the U.S.; therefore treatment in the chronic stages is highly clinically relevant. Human neural stem cells (hCNS-SCns) were prospectively isolated based on fluorescence-activated cell sorting for a CD133(+) and CD24(-/lo) population from fetal brain, grown as neurospheres, and lineage restricted to generate neurons, oligodendrocytes and astrocytes. hCNS-SCns have recently been transplanted sub-acutely following spinal cord injury and found to promote improved locomotor recovery. We tested the ability of hCNS-SCns transplanted 30 days post SCI to survive, differentiate, migrate, and promote improved locomotor recovery.hCNS-SCns were transplanted into immunodeficient NOD-scid mice 30 days post spinal cord contusion injury. hCNS-SCns transplanted mice demonstrated significantly improved locomotor recovery compared to vehicle controls using open field locomotor testing and CatWalk gait analysis. Transplanted hCNS-SCns exhibited long-term engraftment, migration, limited proliferation, and differentiation predominantly to oligodendrocytes and neurons. Astrocytic differentiation was rare and mice did not exhibit mechanical allodynia. Furthermore, differentiated hCNS-SCns integrated with the host as demonstrated by co-localization of human cytoplasm with discrete staining for the paranodal marker contactin-associated protein.The results suggest that hCNS-SCns are capable of surviving, differentiating, and promoting improved locomotor recovery when transplanted into an early chronic injury microenvironment. These data suggest that hCNS-SCns transplantation has efficacy in an early chronic SCI setting and thus expands the "window of opportunity" for intervention

    Cathelicidin-like Helminth Defence Molecules (HDMs) Absence of Cytotoxic, Anti-microbial and Anti-protozoan Activities Imply a Specific Adaptation to Immune Modulation

    Get PDF
    Host defence peptides (HDPs) are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs) that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells). However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects. © 2013 Thivierge et al

    Anti-endotoxic activity and structural basis for human MD-2∙TLR4 antagonism of tetraacylated lipid A mimetics based on βGlcN(l↔l)αGlcN scaffold

    No full text
    Interfering with LPS binding by the co-receptor protein myeloid differentiation factor 2 (MD-2) represents a useful approach for down-regulation of MD-2.TLR4-mediated innate immune signaling, which is implicated in the pathogenesis of a variety of human diseases, including sepsis syndrome. The antagonistic activity of a series of novel synthetic tetraacylated bis-phosphorylated glycolipids based on the GlcN(11)GlcN scaffold was assessed in human monocytic macrophage-like cell line THP-1, dendritic cells and human epithelial cells. Two compounds were shown to inhibit efficiently the LPS-induced inflammatory signaling by down-regulation of the expression of TNF-, IL-6, IL-8, IL-10 and IL-12 to background levels. The binding of the tetraacylated by (R)-3-hydroxy-fatty acids (2xC(12,) 2xC(14)), 4,4-bisphosphorylated GlcN(11)GlcN-based lipid A mimetic DA193 to human MD-2 was calculated to be 20-fold stronger than that of Escherichia coli lipid A. Potent antagonistic activity was related to a specific molecular shape induced by the ,(11)-diglucosamine backbone. Co-planar' relative arrangement of the GlcN rings was inflicted by the double exo-anomeric conformation around both glycosidic torsions in the rigid ,(11) linkage, which was ascertained using NOESY NMR experiments and confirmed by molecular dynamics simulation. In contrast to the native lipid A ligands, the binding affinity of GlcN(11)GlcN-based lipid A mimetics to human MD-2 was independent on the orientation of the diglucosamine backbone of the synthetic antagonist within the binding pocket of hMD-2 (rotation by 180 degrees) allowing for two equally efficient binding modes as shown by molecular dynamics simulation
    • …
    corecore