1,245 research outputs found

    Damage detection in CFRP Composite Plates based on evolving Modal Parameters

    Get PDF
    Despite the good mechanical properties of composite structures, it is still prone to low impact damages resulting in defects such as delamination and the effect is usually not detected by visual inspection. Although the use of modal parameters for identification of damage in Carbon Fibre Reinforced Polymer (CFRP) composite laminates is not new, it is still a subject of discussion within the research community. In this study composite of different stacking configuration manufactured by hand lay-up and autoclave curing were used to conduct the free-free experimental modal analysis within the frequency range of 0 -- 400 Hz. The experiments were performed for both healthy and damage induced samples of same configuration. The effect of the modal parameters such as damping factors, natural frequencies, etc were assessed and the results presented here-in

    Crafting a Systematic Literature Review on Open-Source Platforms

    Full text link
    This working paper unveils the crafting of a systematic literature review on open-source platforms. The high-competitive mobile devices market, where several players such as Apple, Google, Nokia and Microsoft run a platforms- war with constant shifts in their technological strategies, is gaining increasing attention from scholars. It matters, then, to review previous literature on past platforms-wars, such as the ones from the PC and game-console industries, and assess its implications to the current mobile devices platforms-war. The paper starts by justifying the purpose and rationale behind this literature review on open-source platforms. The concepts of open-source software and computer-based platforms were then discussed both individually and in unison, in order to clarify the core-concept of 'open-source platform' that guides this literature review. The detailed design of the employed methodological strategy is then presented as the central part of this paper. The paper concludes with preliminary findings organizing previous literature on open-source platforms for the purpose of guiding future research in this area.Comment: As presented in 10th IFIP WG 2.13 International Conference on Open Source Systems, OSS 2014, San Jos\'e, Costa Rica, May 6-9, 201

    A Review of Structural Health Monitoring Techniques as Applied to Composite Structures.

    Get PDF
    Structural Health Monitoring (SHM) is the process of collecting, interpreting, and analysing data from structures in order to determine its health status and the remaining life span. Composite materials have been extensively use in recent years in several industries with the aim at reducing the total weight of structures while improving their mechanical properties. However, composite materials are prone to develop damage when subjected to low to medium impacts (ie 1 – 10 m/s and 11 – 30 m/s respectively). Hence, the need to use SHM techniques to detect damage at the incipient initiation in composite materials is of high importance. Despite the availability of several SHM methods for the damage identification in composite structures, no single technique has proven suitable for all circumstances. Therefore, this paper offers some updated guidelines for the users of composites on some of the recent advances in SHM applied to composite structures; also, most of the studies reported in the literature seem to have concentrated on the flat composite plates and reinforced with synthetic fibre. There are relatively fewer stories on other structural configurations such as single or double curve structures and hybridised composites reinforced with natural and synthetic fibres as regards SHM

    Ultrafast control of strong light-matter coupling

    Get PDF
    We dynamically modulate strong light–matter coupling in a GaAs/AlGaAs microcavity using intense ultrashort laser pulses tuned below the interband exciton energy, which induce a transient Stark shift of the cavity polaritons. For 225-fs pulses, shorter than the cavity Rabi cycle period of 1000 fs, this shift decouples excitons and cavity photons for the duration of the pulse, interrupting the periodic energy exchange between photonic and electronic states. For 1500-fs pulses, longer than the Rabi cycle period, however, the Stark shift does not affect the strong coupling. The two regimes are marked by distinctly different line shapes in ultrafast reflectivity measurements—regardless of the Stark field intensity. The crossover marks the transition from adiabatic to diabatic switching of strong light–matter coupling

    Beyond the binary collision approximation for the large-qq response of liquid 4^4He

    Full text link
    We discuss corrections to the linear response of a many-body system beyond the binary collision approximation. We first derive for smooth pair interactions an exact expression of the response 1/q2\propto 1/q^2, considerably simplifying existing forms and present also the generalization for interactions with a strong, short-range repulsion. We then apply the latter to the case of liquid 4^4He. We display the numerical influence of the 1/q21/q^2 correction around the quasi-elastic peak and in the low-intensity wings of the response, far from that peak. Finally we resolve an apparent contradiction in previous discussions around the fourth order cumulant expansion coefficient. Our results prove that the large-qq response of liquid 4^4He can be accurately understood on the basis of a dynamical theory.Comment: 19 p. Figs. available on reques

    An Anglo-Saxon execution cemetery at Walkington Wold, Yorkshire

    Get PDF
    This paper presents a re-evaluation of a cemetery excavated over 30 years ago at Walkington Wold in east Yorkshire. The cemetery is characterized by careless burial on diverse alignments, and by the fact that most of the skeletons did not have associated crania. The cemetery has been variously described as being the result of an early post-Roman massacre, as providing evidence for a ‘Celtic’ head cult or as an Anglo-Saxon execution cemetery. In order to resolve the matter, radiocarbon dates were acquired and a re-examination of the skeletal remains was undertaken. It was confirmed that the cemetery was an Anglo-Saxon execution cemetery, the only known example from northern England, and the site is set into its wider context in the paper

    Hyperbolic billiards of pure D=4 supergravities

    Full text link
    We compute the billiards that emerge in the Belinskii-Khalatnikov-Lifshitz (BKL) limit for all pure supergravities in D=4 spacetime dimensions, as well as for D=4, N=4 supergravities coupled to k (N=4) Maxwell supermultiplets. We find that just as for the cases N=0 and N=8 investigated previously, these billiards can be identified with the fundamental Weyl chambers of hyperbolic Kac-Moody algebras. Hence, the dynamics is chaotic in the BKL limit. A new feature arises, however, which is that the relevant Kac-Moody algebra can be the Lorentzian extension of a twisted affine Kac-Moody algebra, while the N=0 and N=8 cases are untwisted. This occurs for N=5, N=3 and N=2. An understanding of this property is provided by showing that the data relevant for determining the billiards are the restricted root system and the maximal split subalgebra of the finite-dimensional real symmetry algebra characterizing the toroidal reduction to D=3 spacetime dimensions. To summarize: split symmetry controls chaos.Comment: 21 page

    Topology, Entropy and Witten Index of Dilaton Black Holes

    Full text link
    We have found that for extreme dilaton black holes an inner boundary must be introduced in addition to the outer boundary to give an integer value to the Euler number. The resulting manifolds have (if one identifies imaginary time) topology S1×R×S2S^1 \times R \times S^2 and Euler number χ=0\chi = 0 in contrast to the non-extreme case with χ=2\chi=2. The entropy of extreme U(1)U(1) dilaton black holes is already known to be zero. We include a review of some recent ideas due to Hawking on the Reissner-Nordstr\"om case. By regarding all extreme black holes as having an inner boundary, we conclude that the entropy of {\sl all} extreme black holes, including [U(1)]2[U(1)]^2 black holes, vanishes. We discuss the relevance of this to the vanishing of quantum corrections and the idea that the functional integral for extreme holes gives a Witten Index. We have studied also the topology of ``moduli space'' of multi black holes. The quantum mechanics on black hole moduli spaces is expected to be supersymmetric despite the fact that they are not HyperK\"ahler since the corresponding geometry has torsion unlike the BPS monopole case. Finally, we describe the possibility of extreme black hole fission for states with an energy gap. The energy released, as a proportion of the initial rest mass, during the decay of an electro-magnetic black hole is 300 times greater than that released by the fission of an 235U{}^{235} U nucleus.Comment: 51 pages, 4 figures, LaTeX. Considerably extended version. New sections include discussion of the Witten index, topology of the moduli space, black hole sigma model, and black hole fission with huge energy releas

    Improved Effective Potential in Curved Spacetime and Quantum Matter - Higher Derivative Gravity Theory

    Get PDF
    \noindent{\large\bf Abstract.} We develop a general formalism to study the renormalization group (RG) improved effective potential for renormalizable gauge theories ---including matter-R2R^2-gravity--- in curved spacetime. The result is given up to quadratic terms in curvature, and one-loop effective potentials may be easiliy obtained from it. As an example, we consider scalar QED, where dimensional transmutation in curved space and the phase structure of the potential (in particular, curvature-induced phase trnasitions), are discussed. For scalar QED with higher-derivative quantum gravity (QG), we examine the influence of QG on dimensional transmutation and calculate QG corrections to the scalar-to-vector mass ratio. The phase structure of the RG-improved effective potential is also studied in this case, and the values of the induced Newton and cosmological coupling constants at the critical point are estimated. Stability of the running scalar coupling in the Yukawa theory with conformally invariant higher-derivative QG, and in the Standard Model with the same addition, is numerically analyzed. We show that, in these models, QG tends to make the scalar sector less unstable.Comment: 23 pages, Oct 17 199

    On the Nature and Genesis of EUV Waves: A Synthesis of Observations from SOHO, STEREO, SDO, and Hinode

    Full text link
    A major, albeit serendipitous, discovery of the SOlar and Heliospheric Observatory mission was the observation by the Extreme Ultraviolet Telescope (EIT) of large-scale Extreme Ultraviolet (EUV) intensity fronts propagating over a significant fraction of the Sun's surface. These so-called EIT or EUV waves are associated with eruptive phenomena and have been studied intensely. However, their wave nature has been challenged by non-wave (or pseudo-wave) interpretations and the subject remains under debate. A string of recent solar missions has provided a wealth of detailed EUV observations of these waves bringing us closer to resolving their nature. With this review, we gather the current state-of-art knowledge in the field and synthesize it into a picture of an EUV wave driven by the lateral expansion of the CME. This picture can account for both wave and pseudo-wave interpretations of the observations, thus resolving the controversy over the nature of EUV waves to a large degree but not completely. We close with a discussion of several remaining open questions in the field of EUV waves research.Comment: Solar Physics, Special Issue "The Sun in 360",2012, accepted for publicatio
    corecore