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Abstract 

Structural Health Monitoring (SHM) is the process of collecting, interpreting, and analysing data 

from structures in order to determine its health status and the remaining life span. Composite 

materials have been extensively use in recent years in several industries with the aim at reducing the 

total weight of structures while improving their mechanical properties. However, composite 

materials are prone to develop damage when subjected to low to medium impacts (ie 1 – 10 m/s and 

11 – 30 m/s respectively). Hence, the need to use SHM techniques to detect damage at the incipient 

initiation in composite materials is of high importance. Despite the availability of several SHM 

methods for the damage identification in composite structures, no single technique has proven 

suitable for all circumstances. 

  

It must be noted that the amount of techniques available nowadays is too extensive to be 

comprehensively reviewed in a single paper. Therefore, the focus will be on techniques that can 

serve as a starting point for studies focusing on damage detection, localisation, assessment and 

prognosis on certain kinds of structures. Thus, the line of thought behind the search and the structure 

of this review is a result of objectives beyond the scope of the paper itself. Nevertheless, it was 

considered that, once the above was understood, an updated synopsis such as this could also be 

useful for other researchers in the same field. 

 

Keywords: SHM, composite structures, damage identification, failure mechanisms, low impact, 

techniques.  

1 Introduction 

Structural health monitoring (SHM) is a process that aims at detecting, locating, and quantifying 

damage in structures at an early stage in order to avoid unexpected failure. Most SHM methods are 

based on the identification of deviations from a “normal” or “healthy” condition. Ideally, deviations 

should be determined at an early stage of damage initiation and corrected by conducting suitable 

maintenance procedures, thereby improving structural integrity, reliability, availability and the 

overall life cycle of the structure (Kessler, Spearing, and Soutis, 2002). 
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Composite materials have gained a wide acceptance in industries such as aerospace, marine, 

automotive, civil infrastructures, and sports equipment, due to their unique mechanical properties, 

namely strength and stiffness to weight ratios (Huang, Sheikh, Ng, and Griffith, 2015; Kessler, 

Spearing, and Soutis, 2002; Montalvão, Ribeiro, and Duarte-Silva, 2011; Montalvão Diogo, 

Dimitris Karanatsis, António MR Ribeiro, Joana Arina, 2014; Ye Lin, Ye Lu, Zhongqing Su, 2005). 

Composites result from the combination of two or more different materials in an attempt to form a 

single material that has enhanced mechanical properties when compared to the individual properties 

of the constituting parts. In the more particular case of composite laminates, these are comprised of 

two or more layers that are laid together (Varga, Vretenar, Kotlar, Skakalova, and Kromka, 2014), 

reinforced with aligned fibres (e.g., carbon) (Notta-Cuvier, Lauro, Bennani, and Balieu, 2014) and 

a matrix (e.g., epoxy resin) acting as the bonding medium. 

 

However, during maintenance, assembly or use, composite materials may be subjected to low-

velocity impacts that can result in barely visible impact damage (BVID) ( Montalvão, Ribeiro, and 

Duarte-Silva, 2011; Shyr and Pan, 2003). This is because of the poor properties in the through-

thickness direction of the CFRP (Zhang and Zhang, 2015). Typically, in BVID, the impact on the 

surface does not result in a mark other than a small indentation that is difficult to identify through 

visual inspection. However, the impact may have resulted in damage that propagates under different 

mechanisms through the thickness of the laminate down to the opposite side which is usually hidden 

(Cantwell and Morton, 1989). This could compromise the integrity of the structure, reduce its life 

cycle (Abrate, 1994) and raise safety issues. Hence, the need to use SHM to detect damage at its 

incipient stage of initiation in composite materials still is of high importance. Failure mechanisms 

in composite materials include matrix cracking, fibre fracture, debonding,  fibre pull-out, micro-

buckling, and kink band (Alexandrov, Erisov, and Grechnikov, 2016; Sause, Müller, 

Horoschenkoff, and Horn, 2012). This may happen through a chain of triggers such as excessive 

loading conditions or even low to medium velocity impacts (Montalvão, Ribeiro, and Duarte-Silva, 

2011).  

 

Several techniques such as ultrasound, X-ray, visual inspection, acoustic emission, or eddy-currents, 

among others, have been used for SHM (Maia, Almeida, Urgueira, and Sampaio, 2011). However, 

none of these techniques have proven adequate for all applications, because they all have their 

peculiar advantages and limitations. Nonetheless, having the idea about   their applications is   vital 

in   structural health   monitoring of composite facilities in several industries. Over the years, SHM 

has evolved and prompted the development of online methods for monitoring. These methods are 

primarily based on the information collected from smart materials, novelty-based, mechanical 

properties, image processing, statistical pattern recognition, and optical fibres (Maia, Almeida, 

Urgueira, and Sampaio, 2011). 

 

This article presents a review of the literature on different types of failure modes and some of the 

existing techniques for damage detection in composite materials, highlighting their advantages and 

limitations, with special emphasis on carbon fibre-reinforced plastics (CFRPs). Therefore, this paper 

offers some updated guidelines for the users of composites on some of the recent advances in SHM 

applied to composite structures; also, most of the studies reported in the literature seem to have 

concentrated on the flat composite plates and reinforced with synthetic fibre. There are relatively 

fewer stories on other structural configurations such as single or double curve structures and hybrid 

composites reinforced with natural and synthetic fibres as regards SHM. 

 

 



2 Failure Mechanisms of Composite Materials 

 

Due to the high strength-to-weight and stiffness-to-weight ratios of CFRP composites, these 

materials have been widely applied in the aerospace, civil, marine, transport, and oil industries. 

However, their complex damage (Schwab, Todt, Wolfahrt, and Pettermann, 2016) and failure 

morphologies such as intralaminar and interlaminar failures (Liu, Chu, Liu, and Zheng, 2012) 

constitute a hindrance on their application. Typical failure mechanisms that will be discussed in this 

section include matrix cracking, fibre fracture, debonding, fibre pullout, delamination, micro-

buckling, and kink bands. 

2.1 Matrix Cracking 

Matrix cracking is the first type of damage that occurs in composite laminates (Nairn and Hu, 1994). 

This is characterised by cracks that develop between two or more layers that are parallel to the fibres 

in the ply and extend through the thickness of the ply (Nairn, 2000). According to (Gayathri, Umesh, 

and Ganguli, 2010; Hu, Liu, Li, Peng, and Yan, 2010; Jen and Lee, 1998; Tong, Guild, Ogin, and 

Smith, 1997), matrix cracking in carbon fibre/epoxy (CF/EP) laminates occurs across the whole 

cross sectional area of the perpendicular plies. This may or may not trigger other failure modes, 

depending on the stresses generated due to temperature variations, quasi-static loads or impacts.  

 

Matrix cracking alone does not usually constitute a problem to structural integrity. However, since 

it is the forerunner of other (more serious) failure modes in composite laminates, it has deserved 

much attention from researchers. For example, extensive research has been conducted by ( Gayathri,  

Umesh, and Ganguli, 2010; Henaff-Gardin, Lafarie-Frenot, and Gamby, 1996; Nairn, 1992; Park 

and McManus, 1996) on matrix cracking and its impact on the performance of composites. 

However, cracks due to the manufacturing process of composite laminates were not considered. 

2.2 Fibre Fracture 

Common sense would say that fibre fracture reduces both the stiffness (Young’s modulus) and the 

strength of the composite. For example, the impact of the fibre fracture on the stiffness of the 

composite laminate was studied in (Craven, Pindoria, and Olsson, 2009). It was observed that the 

initiation of the fracture mechanism in the composite has more effect on the buckling load than the 

reduction of its stiffness. Also, the result shows that fibre fractures have little effect on the stiffness 

of the composite when compared to its effect on the strength of the material. Therefore, the load 

carrying capacity of a laminate should be investigated as soon as the fracture is observed.  

 

A novel method was presented by (Davidson and Waas, 2012) to study the fracture of fibre-

reinforced composites. Their study focused on the mode I fracture (opening) of carbon fibre and 

glass fibre unidirectional composites under quasi-static loading. Their result indicates that crack 

progression shows smooth and discontinuous responses. The researchers used a simple algorithm 

based on the critical fracture internal stress or strain, and a critical material specific crack velocity 

was used to validate the experimental results; but the crack initiation toughness was not feasible due 

to loading rates of the quasi-static testing. 

 

Some researchers, (Bedsole, Bogert, and Tippur, 2015) introduced carbon nanotubes into the 

interlaminar zone of unidirectional CFRP composite in order to enhance the properties of 

interlaminar and intralaminar fracture under dynamic and quasi-static loading conditions. They 

studied the dynamic interlaminar crack initiation and propagation in a fibre-reinforced composite 

material under dynamic loading using a digital image correlation. Although their results showed that 



carbon nanotubes improved the fracture toughness of the material when under dynamic and quasi-

static loading conditions, they did not improve the critical stress intensity factor.  

 

Furthermore, Vaughan and McCarthy (2011) presented a Micromechanics damage model to study 

the impact of intra-ply properties on the transverse shear deformation of a CF/EP composite. Their 

study assumed that the parameters describing Mode I and Mode II failures are the same. They 

observed that the thermal residual stress has a high influence on the initial damage location in the 

microstructure, but has less influence on the overall shear response. It was also found that due to the 

thermal residual stresses, the transverse fracture surface contracted slightly under the combination 

of transverse normal and shear loading. However, more research is needed to study how the mixed-

mode behaviour of the interface crack progression for strength and fracture energy.  

2.3 Debonding 

Debonding normally occurs in areas with high interfacial stress concentration (Neto, Alfaiate, and 

Vinagre, 2016), which are related to the presence of cracks. When subjected to an impact load, a 

large part of the fibre may be pulled off when adhesion fails. Several factors such as differential 

thermal stress, crack, ageing structure (Dhieb, Buijnsters, Elleuch, and Celis, 2016; Swamy and 

Mukhopadhyaya, 1999), low-velocity impact, environment and poor design could be responsible 

for such phenomenon to occur. Although debonding is not the primary cause of failure in composite 

materials, it compromises the strength at its location and the surrounding fibres, which may result 

in a breakdown when overloaded (Gamstedt, 2000).  

2.4 Delamination 

Delamination in fibre composites is mainly caused by impacts from foreign objects. It is one of the 

most vital failure modes in composite materials because of the strength of the composite laminates 

is inversely proportional to delamination (Latifi, Van der Meer, and Sluys, 2015). That is, as the rate 

of delamination increases, the cohesion between the plies of the composite reduces. Hence, it is 

necessary to understand if delamination has initiated.  

 

A penalty-based method was used by Barbieri, and Meo (2009) to modelled delamination in 

composite structures. Although the simulation and the experimental results agreed; only single mode 

delamination was considered. It would make sense to consider the multiple mode delamination 

under mode I and II quasi-static loading with a proposed approach to test its robustness. Schön 

(2000) developed a model to determine the fatigue delamination growth rate in a composite 

laminate. The model needs to experimentally determining the critical static energy release rates, 

delamination growth rate at which the critical energy release rate for quasi-static loading is reached, 

the delamination growth rate, and the threshold value of energy release rate of the delamination 

crack during a fatigue cycle.  

 

Also, Argüelles, Viña, Canteli, and Bonhomme (2010) evaluated crack initiation and propagation, 

which influence the delamination process under modes I and II fatigue loading in the composite 

material. It was concluded that the accumulation of resin and the manufacturing procedure of the 

composite laminate have a high impact on the fatigue curves of delaminated specimens. However, 

the researchers did not consider the effect of temperature increase on the rate of crack growth, which 

could have been of help in determining the remaining useful life of the structure. 



2.5 Fibre Pullout 

Weak bonding within the laminates is the major cause of fibre pullout. Hence, (Pochiraju, Lau, and 

Wang, 1995) studied the stresses caused by fibre pullout when fibre matrix experienced frictional 

sliding and underwent compressive thermal residual stresses. They applied asymptotic analysis and 

Muskhelishvili-Kolosov theory to solve the stress within the area where the fibre was pulled out. A 

fibre pullout test is therefore required to determine the thermal, mechanical properties (stiffness and 

strength) of the interfaces in a CFRP (Chandra, and Ghonem, 2001). Two methods are used to 

conduct fibre pullout tests, namely single pullout test and multiple pullout tests. Although single 

fibre pullout test is easier to apply, it is not suitable for fibres with small diameters (Yue, and 

Padmanabhan, 1999). The multiple fibre pullout test method uses a large part of fibres, and it gives 

the comparable results to the single fibre pullout test.  

 

Furthermore, Yue, C. Y., and Padmanabhan (Yue, and Padmanabhan, 1999) used the multiple fibre 

pullout test technique to determine the possibility of increasing the interfacial strength of Kevlar 

fibre/epoxy composites. Obviously, the multiple pullout tests gives a better result than the single 

pullout test. In addition, Jia, Chen, and Yan (2014) proposed a numerical method to probe the fibre 

pullout in a Carbon nanotube (CNT)–hybridised carbon fibre (CF). The result shows that the added 

bonding of the CNT matrix interface can increase the specific pullout energy and the interfacial 

shear strength of the hybrid fibre. 

2.6 Micro-buckling 

Fibre micro-buckling reduces the compressive strength of CFRPs (Harich, Lapusta, and Wagner, 

2009; Lee, and Soutis, 2007; Vinet, and Gamby, 2008). It affects the mechanical properties and the 

matrix of the composite laminates. The local failure and matrix crack occur due to micro-buckling 

(Zheng, and Engblom, 2002). Several researchers have conducted an experiment on the cause and 

effect of micro-buckling in composites. Also, Berbinau, Soutis, and Guz (1999) examined the shear 

strains that developed in the matrix as a result of fibre micro-buckling. It was confirmed that fibre 

failure starts on the compression side of a composite, where the maximum fibre curvature occurs. 

However, they did not study the impact of fibre/matrix boundary on the formation of fibre 

microbuckling.  

 

Also, Mohammadabadi, Daneshmehr, and Homayounfard (2015) studied the thermal buckling of 

micro-composite laminates and the impact of shear deformation in the composite laminate based on 

modified couple stress theory and using Reddy beam, Timoshenko beam and Euler-Bernoulli beam 

theories. Except cross-ply laminates, the researchers did not investigate quasi-isotropic, orthotropic, 

anti-ply, anti-symmetric and balanced laminates. Maybe investigating other laminate configuration 

would offer a more reliable result. In addition, Huang, Sheikh, Ng, and Griffith, (2015) proposed 

the use of finite element analysis (FEA) to study micro-buckling in grid stiffened composite plates 

with different grid configurations. They studied the buckling load capacity of different grid-stiffened 

composite laminates, such as x-grid, ortho-grid, iso-grid, and bi-grid. Although based on their 

results, the proposed modelling suitable for stiffened plates, there was no attempt on applying it on 

stiffened curved structures. Hence, more research on grid stiffened curved structures would be 

necessary. 

2.7 Kink Bands 

A kink band is a deformation that has a pronounced twist of the fibres with a deviated orientation 

from the original orientation on the composite laminate. It occurs due to fibre dislocation or plastic 

micro-buckling in the composite laminate (Wind, Steffensen, and Jensen, 2014), which is caused by 



compressive forces. Kink bands reduce the compressive strength of a composite laminate. When 

formed it expands continuously at a constant stress level known as propagation stress (Vogler and 

Kyriakides, 1999). Three researchers, Budiansky, Fleck, and Amazigo (1998) examined the 

transverse and band broadening kink propagation based on the nonlinear couple stress theory of 

composite kinking in one dimension. Their aim was to study the effect of fibre bending resistance, 

the mechanics of kink band broadening and transverse propagation. See more information on their 

work in (Budiansky, Fleck, and Amazigo, 1998). The researchers considered the kink angle as a 

prescribed quantity, but did not state how the angle should be selected. Also, they only considered 

kinking in 1-D and no attempt was made on 3-D. The authors has not been able to identify earlier 

works on kinking in 3-D. Recently, Svensson, Alfredsson, Stigh, and Jansson (2016) developed a 

model to estimate the cohesive law related to kink band’s evolution in a unidirectional composite 

laminate. They modelled the formation of a kink band in a unidirectional CF composite using a 

cohesive zone model. Their results revealed that kink band is developed with a height of nearly 

200m. However, Svensson, Alfredsson, Stigh, and Jansson (2016) only analysed a unidirectional 

CF composite, but considering a multidimensional CF composite material would be encouraged.  

 

Despite the immense studies conducted by several researchers to find how compressive failures 

occur, it has not been easy to estimate the compressive failure in a unidirectional composite. An 

increase in compressive load introduces fibre damage in the composite. Kink bands could be 

triggered by the transverse movement of fibres that are close to broken fibres due to shear failures 

at various frail defects (Bai, and Phoenix, 2005). The initiation of kink bands on a composite 

laminate drastically reduces its strength and causes it to fail. This was analysed experimentally and 

through analytical models by Bazant, Kim, Daniel, Becq-Giraudon, and Zi, (1999). It was confirmed 

that the size of the kink band has a noticeable effect on its propagation. In addition, Vogler, and 

Kyriakides (1997) experimentally analysed APC-2/AS4 thermoplastic composites and observed that 

the quasi-static propagation of kink bands occur in a stress point as high as 40% of the toughness of 

the undamaged material. The propagation stress is not sensitive to minute irregularities in fibre, and 

may not be a concern in design consideration. 

 

More also, Gonzalez‐Chi, Flores‐Johnson, Carrillo‐Baeza, and Young, (2010) measured the 

distribution of axial stress around a kink band on a fibre installed in a thermoplastic model composite 

using Raman spectroscopy (it reveals the structure of a material) technique. They found out that the 

maximum interfacial stress was close to the kink band where the bond between the fibre laminate is 

still intact. However, further research is needed at higher levels of strain in composite to ensure 

more debonding that is far from the location of kink band. Also, (Hsu, Vogler, and Kyriakides (1999) 

simulated the steady state, broadening of kink bands with a micromechanical model as examined by 

Vogler and Kyriakides (1999). The model could forecast the propagation, stress remarkably. 

Nevertheless, using a realistic representation of the manner deformation in the kink band, would 

improve the quantitative accuracy. Likewise, Pimenta, Gutkin, Pinho, and Robinson (2009b) 

developed a micromechanical model for the formation of kink bands in a unidirectional fibre 

reinforced composite. This study followed the one from Pimenta, Gutkin, Pinho, and Robinson 

(2009a). The model could predict the width of the kink band, the deviation and primary stress fields 

in fibres and matrix at various phases of the formation of the kink band, the longitudinal compressive 

toughness of the composite, and the direction of the fibres when the failure was initiated in the fibre. 

 

Furthermore, Pimenta, Gutkin, Pinho, and Robinson (2009a) investigated the inception and the 

propagation of kink bands using numerical models and experimental examination. The results show 

that the formation of kink bands is related to the weakening of the matrix, whereby the fibres around 

the compressive area fail before any other location. The rate at which kink band releases energy in 

a unit load decreases initially, but increases at a certain length of propagation (Zi, and Bažant, 2003). 



3 An Overview of Damage Identification in Composite Materials 

 

Many techniques have been developed over the years to detect damage at an early stage in composite 

materials. However, it is not possible to have a single technique that can be effective for all loading 

conditions, material constitution and failure modes. All techniques have their own advantages and 

limitations. The application of a technique can be based on the criticality of the equipment, available 

resources, and skilled personnel to apply it. 

The aim is to increase the reliability and availability of equipment with the available damage 

detection technique at the lowest cost without compromising standards. In this section, a critical 

review of some of the damage identification techniques is presented.  

3.1 Vibration-based 

Most vibration-based methods are based on the relationship between the change in the state of the 

structure and the change in its vibration response. That is, the change in the dynamic properties of 

the structure may be related to the presence of damage. For instance, the presence of damage in a 

structure may alter properties such as the stiffness and strength. Since dynamic models may be 

described from the structural properties of mass, stiffness, and damping, then it is plausible to 

presume that the vibration responses of the structure at an undamaged state will differ from the 

damaged state. Hence, it is often necessary to have a prior knowledge of the vibration responses of 

the undamaged structure to use as a set standard. Vibration-based structural health monitoring for 

damage detection is time saving and relatively cost-effective. It can also be applied in real-time 

monitoring of structures. 

 

According to, Maia and Silva (1997), in dynamics, the properties of a system with an N-degree of 

freedom (DOF) can be illustrated with either spatial, modal or response model – that can be linked 

to each other by either forward or inverse paths (Montalvão, 2010). 

The dynamic characteristics are contained in a spatial distribution of mass, stiffness, and damping 

properties represented in terms of matrixes of mass [𝑀], stiffness [𝐾], and damping [𝐶]  (for a 

viscously damped model) or [𝐷] (for an hysterically damped model) (Diogo Montalvão, 2010). Let 

each DOF be expressed by a coordinate 𝑥𝑖(𝑡) with an applied force 𝑓𝑖(𝑡) where 𝑖 = 1, 2, 3, … , 𝑁 

DOFs, then the model can be illustrated using the Newton’s second law of motion: 

 

 [𝑀]{�̈�(𝑡)} +  [𝐾]{𝑥(𝑡)} + 𝑖[𝐷]{𝑥(𝑡)} =  {𝑓(𝑡)}   (1) 

 

if the case is a hysterically damped model, or: 

 

 [𝑀]{�̈�(𝑡)} +  [𝐶]{�̇�(𝑡)} + [𝐾]{𝑥(𝑡)} =  {𝑓(𝑡)}   (2) 

 

if the case is about the viscously damped model. It is quite difficult to deal with the viscously 

damped model illustrated in Eq. (2), where damping is non-proportional (Maia and Silva, 1997). It 

is worthy to note that, in real cases viscous or hysteretic damping is non-proportional. However, to 

solve the equations, it is often useful to consider the approximation that it is proportional, as it 

eliminates coupling and we get a diagonal matrix. Hence, proportional damping can be assumed as 

a special case of damping and it suggests that the damping matrix is a linear combination of the 

mass and stiffness matrices. In the case of the hysteretic damping, this is: 

 

 𝐷 =  𝑎[𝑀] + 𝑏[𝐾] (3) 

 



where a and b are real scalars. This kind of damping model is also known as classical damping or 

Rayleigh damping. The dynamic behaviour of structures that are subjected to varying loading is 

usually illustrated by constant hysterical damping model. Hence, the equation of motion will be 

based on the hysteretic damping. Assuming there is a general solution of the form: 

 

 {𝑥(𝑡)} =  {�̅�}𝑒𝑖𝜆𝑡   (4) 

 

where {�̅�} is an  𝑁 × 1  vector of time-dependent response amplitudes, and substituting it into 

Eq.(1), we will have: 

 

 [[𝐾] − 𝜆2[𝑀] + 𝑖[𝐷]]{�̅�} =  {0}   (5) 

 

which is a complex eigenvalue problem, when solved results in the solution described by 𝑁 complex 

eigenvalues 𝜆𝑟
2 and 𝑁  real eigenvectors Φ. The 𝜆𝑟

2 have information on the natural frequencies of 

the system and Φ has information on the mode shapes. The complex eigenvalue 𝜆𝑟
2 can be defined 

as: 

 

 𝜆𝑟
2 = 𝜔𝑟

2(1 + 𝑖𝜂𝑟)   (6) 

 

where 𝜂𝑟and 𝜔𝑟 are the damping loss factor and natural frequency, respectively, for mode 𝑟. The 

spatial model can be linked with the modal model by orthogonality conditions of the modal matrix: 

 

 [Φ]𝑇[𝑀][Φ] = [I]  (7) 

 

 

[Φ]𝑇[𝐾] +  𝑖[𝐷][Φ] =  [ˋ𝜆𝑟
2ˏ]                                                           (8) 

  

 

where [I] is the identity matrix, [Φ] is the mass-normalised mode shape matrix. This also means that 

the mode shape matrix is a non-singular invertible matrix (Montalvão, 2010). Hence, a spatial 

description of the model can be obtained from the modal model and conversely. 

 

However, instead of that, a response model described by Frequency Response Functions (FRFs) is 

obtained. Considering the frequency domain in a steady state, the FRF 𝐻(𝜔) can be determined for 

each frequency𝜔: 

 

 𝐻(𝜔) =
𝑋(𝜔)

𝐹(𝜔)
   (9) 

 

where  𝑋(𝜔)  is the complex response and 𝐹(𝜔)  the complex force. The FRF is also called 

receptance, mobility, or accelerance, depending on the complex response being defined as 

displacement, velocity, or acceleration, respectively. These quantities can be related with each other 

by differentiation and integration. According to, Maia and Silva (1997) and in the case of a 

receptance, the relationship between the response model and the modal model is: 

 

 [𝛼(𝜔)] =  [Φ][ `𝜆𝑟
2 − 𝜔2ˏ ]−1[Φ]𝑇   (10) 

 

where [𝛼(𝜔)]  is the receptance matrix. Hence, starting with a spatial model a response model was 

obtained after going through an intermediate modal model. This sequence is normally performed 



when the starting point is a theoretical analysis. Nonetheless, if the complexity of systems is such 

that it is difficult to model it analytically, the inverse method should be followed where the starting 

point is the response model with the experimental measurement of the system FRFs. Several 

methods allow derivation of the experimentally obtained response model of the modal 

characteristics of a given system (Maia and Silva, 1997). The procedure is known as modal 

identification. Fig.3.1 shows the relationship between spatial, modal, and response models. 
 

Figure 3.1 Dynamic models interrelation (hysterical damping case) (Diogo Montalvão, 2010) 

 

 
Each term of the receptance matrix in Eq. (10) would be of the form: 

 

 𝛼𝑗𝑘(𝜔) =  
𝑋𝑗̅̅ ̅

𝐹𝑘
= ∑ 𝑟�̅�𝑗𝑘

𝜔𝑟
2−𝜔2+𝑖𝜂𝑟𝜔𝑟

2
𝑁
𝑟=1    (11) 

 

where 𝑋�̅�  is the complex response amplitude in the 𝑗 coordinate and 𝐹𝑘  is the amplitude of the 

applied force in the 𝑘 coordinate. 

 

3.1.1 Modal Strain Energy 

 

Ooijevaar, Loendersloot, Warnet, de Boer, and Akkerman (2010), investigated a vibration based 

damage identification method known as the modal strain energy damage index algorithm, by 

applying it to composite T-beams that are vibrating under bending and torsional modes, to detect 

and localise delamination. A Laser Doppler Vibrometer (LDV) was used to determine the FRFs 

between the point of excitation and the measurement points along the test specimen. The authors 

obtained the modal parameters (modal damping factors, natural frequencies, and mode shapes) from 

the FRF measurements using Experimental Modal Analysis (EMA). The results show that the 

measurement of changes in the natural frequencies of the bending modes can be used to detect 

damage in the specimen.  

 

However, the sensitivity of the damage index depends on the distance between the delamination and 

the measuring points. They affirm that as the number of measurement points reduces, the sensitivity 



of the damage index to detect damage at some distance from the measurement points is affected. 

Although the frequency response measurement method can be used to detect relatively small 

damage in a simple structure, it cannot be generally used on its own to provide information about 

the type, size, location, and orientation of damage (Kessler, Spearing, Atalla, Cesnik, and Soutis, 

2002). 

3.1.2 Frequency Method 

 

Kim (2003), identified damage in both laminated composites and sandwich composite beams using 

the reconstructed residual FRF-based damage identification method. The method is based on the 

differences between the FRFs of damaged and undamaged test structures. It was found that the 

changes in the natural frequencies and modal damping ratios of a composite structure can be used 

to identify debonding or delamination because the FRFs are noticeably affected by the global 

changes in stiffness and damping due to the delamination in the composite structure (Kim, 2003). 

However, the damage indicator based on the measured FRF-curve area is not consistent. The FRF-

curve area is the potential energy density of the structures based on the assumption of unit inertial 

energy density (Kim, 2003).  

 

Manoach, Samborski, Mitura, and Warminski (2012) investigated nonlinear vibration models to 

study the impact of damage on the vibration response of structures with varying temperatures. The 

damage detection method was based on Poincaré maps of responses, which is a standard tool used 

for dynamic system inspection ( Manoach, Samborski, Mitura, and Warminski, 2012). The authors 

confirmed from their results that damage can affect the time domain response of a beam and that a 

change in temperature leads to a nonlinear change in the dynamic response of the beam. A useful 

aspect of this method is that the prior knowledge of a reference healthy state of the structure is not 

needed. However, the proposed method by the researchers was not applied on CF composite, but 

only glass-epoxy composite. 

 

Herman, Orifici, and Mouritz (2013) used wavelets (Sung, Kim, and Hong, 2002) to detect damage 

in composite T-stiffened panels, which are often used in the aviation industry and other light 

structures. A scanning LDV was used to measure the displacements and mode shapes induced by 

elastic stress waves at different frequencies (Herman, Orifici, and Mouritz, 2013). They followed a 

typical approach whereby any deviation in the modal properties between the undamaged and 

damaged states is used to detect and localise damage. Both numerical and experimental analysis was 

conducted and correlations between the modal parameters and the presence of damage, either in the 

form of cracks or porosity was seen. However, damage identification in regions with high damping 

properties was not possible with their method. 

 

Pérez, Gil, and Oller (2014) studied the possibility by using vibration-based techniques to detect 

low impact damage in composite laminates. The authors assessed and compared four modal-based 

damage indicators (frequency shift, mode shape change, curvature mode shape change and residual 

load-bearing capacity) by comparing results from undamaged and damaged states. Additionally, 

their study investigated the effectiveness of the damage indicators in detecting damage, its location, 

and the damage progression in the test specimen. They found that relative changes in the natural 

frequencies are smaller than those seen for mode shapes. However, they also noted that the 

sensitivity of the damage indicators depends on the number of measured coordinates (DOFs) and 

the number of modes within the measurement frequency range. Based on these limitations, further 

research would be needed to study a large structure with the proposed method.  

 



Wang, Qiao, and Xu (2015) conducted numerical analysis of anisotropic composite laminate plates 

and examined the impact damage had on the vibration characteristics. The damage was modelled as 

a local reduction of the stiffness. The severity of damage, damage anisotropy (the ratio of the 

reduction of stiffness in each direction to the reduction of stiffness in the longitudinal direction) and 

damage location, were the damage features used to describe different damage scenarios in the 

composite structure ( Wang, Qiao, and Xu, 2015). The dynamic governing equation was proved 

based on classical theory and the perturbation method was used to obtain the analytical solutions. 

An FEA was conducted to verify the effectiveness of their proposed method. The results show that 

the impact of the vibration characteristics of the three damage features is not similar. Unlike the 

modal curvature and strain energy, the natural frequencies and modal displacements are less 

sensitive to damage. The numerical results show that: damage in the longitudinal direction has the 

highest impact on the vibration response when compared to other directions. The damage has more 

impact on the vibration characteristics when it is away from nodal lines and an increase in the 

severity and size of damage results in a reduction in the natural frequencies and modal strain energy. 

Wang, Qiao, and Xu (2015) suggested that the perturbation-based vibration analysis developed can 

be used to assess the impact of damage on the vibration characteristics of anisotropic plates and also 

detect damage in laminated plates. 

Many other vibration-based methods use aspects of the vibration response. Since these are very 

broad, it was decided to further discuss them in different independent sections, as is the case of 

Transmissibility based methods. 

3.1.3  Transmissibility 

 

Transmissibility analysis has gained a lot of attention in the past decade due to its simplicity of 

implementation, as it uses conventional vibration transducers and does not require that the loading 

conditions are known. In simple terms, the ratio between two measured outputs (responses at 

different coordinates) is known as the transmissibility function (TF) ( Devriendt, Presezniak, De 

Sitter, Vanbrabant, De Troyer,  Vanlanduit, and Guillaume, 2010),(Mao and Todd, 2012). Among 

other types of frequency domain system identification methods, some authors argue that the 

transmissibility response methods are more sensitive to local variations in the structure: it is suitable 

for output-only data from the structure and it is sensitive to local structural changes (Mao and Todd, 

2012; Zhou, Perera, and Sevillano, 2012). In other words, transmissibility does not consider the 

excitation force (input data); rather it uses only responses (output data). Therefore, since it does not 

require the loads to be known, it can be considered as a case of the broader area of operational modal 

analysis (OMA), tackling at least one issue from EMA. Among the first to explore the concept of 

Transmissibility in Multiple Degree-of-Freedom (MDOF) systems is (Ribeiro, Maia, and Silva, 

2000; Ribeiro, Silva, and Maia, 2000; Ribeiro, Maia, and Silva, 1999).  

 

In order to reduce or eliminate human error and cost during data collection from structures, (Yi, 

Zhu, Wang, Guo, and Lee (2010) developed mobile sensors to detect damage in civil structure and 

transmit it to a computer for processing. They used transmissibility function analysis to process the 

data extracted from the structure by the mobile sensors, to detect damage in the structure. The 

proposed technique can locate damage under certain circumstances. Furthermore, few sensors are 

needed and it does not need extensive human effort to work. However, the authors agreed that more 

study is needed to enable the mobile sensors to detect a wider range of other potential damages in 

the structure. 

 

Lang, Park, Farrar, Todd, Mao, Zhao, and Worden (2011) exploited the impressive properties of 

NOFRF transmissibility to develop an approach that can identify and locate not just linear, but also 

non-linear damage in structural systems with multidegree of freedom. The concept of NOFRF was 



proposed to analyse nonlinear systems in the frequency domain (Lang and Billings, 2005). They 

defined the concept of transmissibility of the NOFRFs as the ratio of the maximum order NOFRFs 

linked with two varying output responses of concern in a nonlinear system. The NOFRF 

transmissibility depends only on the linear characteristics of the system; hence does not change with 

the system’s inputs. The researchers conducted both experimental and numerical studies to confirm 

the technique. Their results show that the technique is effective and it can be used for both detection 

and localisation of damage in real structures. Although the effectiveness of the new technique is not 

in doubt, but only a simple MDOF structural system was analysed. Hence, it would be unfair to 

make a generalised conclusion, until a complex MDOF systems model is considered. 

 

According to Devriendt and Guillaume (2007), it was not always feasible to use transmissibility 

measurements to identify modal parameters. However, since the transmissibility changes with the 

location of the input forces, it can be used to determine the system’s poles Devriendt and Guillaume,  

(2007). The authors could identify the modal parameters of a structure by combining transmissibility 

measurements under various loading conditions. The loading conditions were achieved by a change 

in ambient forces or by using an impact hammer to apply forces at different locations on the test 

specimens Devriendt and Guillaume (2007). Unlike the classical output-only techniques, the 

transmissibility-based method does not require the operational forces be white noise; it can be a 

swept sine, coloured noise, impact, etc. (Devriendt and Guillaume, 2007, 2008). Similarly, 

Devriendt, Presezniak, De Sitter, Vanbrabant, De Troyer, Vanlanduit, and Guillaume (2010) 

detected and located damage frequency domain TFs. They suggested the use of small frequency 

bands only that are close to the resonance frequencies of the structure to detect damage. In addition, 

the required frequency band should be selected to improve the reliability of the method. Both 

numerical and experimental results were presented to confirm the technique in damage detection. 

However, the application of this technique needs highly skilled personnel.  

 

Sampaio, Maia, Ribeiro, and Silva (2001) summarised the concept of transmissibility and used it to 

detect and localise damage in structures. In their work, the special case of the transmissibility matrix 

for an MDOF is defined as: 

 

 {𝑋} =  [𝑇]{𝑋}   (12) 

 

where [𝑇] is the transmissibility matrix as a function of the frequency that relates itself with all the 

set of measured responses contained in the response vector {𝑋}. It is like  auto-transmissibility 

(Sampaio, Maia, Ribeiro, and Silva, 2001). The presence of damage in the structure would show 

variation in [𝑇], and it will become 𝑇𝑑. The d stands for damage. Their work was focused on damage 

detection and localisation. The authors presented a graphical display of the undamaged [𝑇]and 

damaged 𝑇𝑑  for each frequency to make it possible to visually detect any deviation in the 

transmissibility coefficients that revealed the presence of damage in the structure. According to 

Sampaio, Maia, Ribeiro, and Silva (2001), the global matrices for the healthy and damaged cases 

can also be obtained by summing up all the frequency range. From their results, it is shown that the 

method they presented has the potential for both damage detection and localisation. They assert that, 

although the damage location can be revealed by summing up the changes between the 

transmissibility maps for all the frequencies, the wide difference that can ensue near the resonances 

and anti-resonances will affect the process. However, the limitation was prevented by counting how 

many times the differences in the maximum transmissibility occur in each structural element. 

 

Maia, Almeida, Urgueira, and Sampaio (2011) proposed the use of the transmissibility response 

function measured along the structure to detect and quantify the severity of damage. They conducted 



some numerical simulations and compared the results with those obtained from frequency response 

functions (FRFs). The authors also confirmed the proposed method by experimental testing. It was 

confirmed that the transmissibility is sensitive for the detection and quantification of the damage 

extension. They compared the results of the DRQ and the transmissibility damage indicator (TDI) 

from numerical and experimental results. The two indicators are based on the RVAC correlation 

factor. It was seen that the TDI detects and quantify damage better than the DRQ. In addition, the 

more the measured coordinates for each applied force, the better the results achieved with TDI. 

However, the effectiveness of the method depends on the number of measurement points, for a given 

number of forces applied. 

 

Devriendt and Guillaume (2008) conducted a numerical experiment on a cantilever beam and 

compared the results from input-output modal analysis based on frequency response functions 

(FRFs) and output-only responses based on transmissibility measurements. It was seen that the 

correct system poles can be identified starting from only the transmissibility measurements. The 

applicability of the proposed method depends on obtaining varying loading conditions during the 

experiment. 

Maia, Ribeiro, Fontul, Montalvão, and Sampaio (2007) proposed the use of transmissibility with 

detection and relative damage quantification indicator (DRQ) to detect damage in structures. A DRQ 

value of 1 or 0 means no damage or damage exist respectively. To conduct the experiments, the 

responses were measured with seven accelerometers mounted on a beam at various locations. Two 

shakers were used to excite the beam and two force transducers were used at the excitation 

coordinates to measure the applied forces. The level of force applied on the beam was changed 

through various rounds of tests. The effectiveness of the DRQ depends on the Response Vector 

Assurance Criterion (RVAC) between the damaged and undamaged response vectors. Since the load 

applied to a structure determines the response generated, a correlation that does not depend on load 

is needed. Transmissibility was used to generate curves that are not dependent on the applied loads 

when there was no damage in the beam. As damage increases, the DRQ value reduces below 1 

sharply. There is need to investigate the causes of the amount of such deviation. 

 

More recently, Li, Peng, Dong, Zhang, and Meng (2015) developed a technique that is based on 

transmissibility response measurements to detect and identify the changes in structural damping and 

stiffness. They investigated the effects of the local variation in stiffness and damping on the TFs and 

observed that there is a considerable difference between the input force and the variation in stiffness 

and damping. The authors developed a new damage indicator that is based on the differences 

between TFs before and after the variations in stiffness and damping. Several simulations were 

conducted to validate the damage detection indicator. In addition, factors such as the position of the 

applied force, frequency bandwidth and boundary conditions were determined to influence the 

performance of TFs ( Li, Peng, Dong, Zhang, and Meng, 2015). The proposed damage indicator was 

shown to be effective in the detection of variations in both damping and stiffness. Notwithstanding, 

the reduction of the impact on the transmissibility of these factors needs more attention.  

3.1.4 Damping 

 

According to Keye, Rose, and Sachau (2001), the modal damping factors may be a more sensitive 

parameter to damage in delaminated composite structures than the natural frequencies. For example, 

in order to grasp the correlation between modal parameters and the level of damage in composite 

materials, (Shahdin, Mezeix, Bouvet, Morlier, and Gourinat, 2009) conducted an impact test on 

carbon fibre entangled sandwich materials in order to understand the correlation between the 

damage level density and modal parameters. They conducted vibration tests on damaged and 

undamaged specimens, monitored the changes in the modal damping factors before, and after the 



damage was initiated. Heavy and light entangled sandwich materials were used. The heavy 

specimens have 2.5 times more resin than the light specimens do. The results showed that due to the 

better damping characteristics, the lighter materials are more sensitive to damage compared to the 

heavy materials. It was concluded that damping shows more sensitivity to damage than changes in 

stiffness. Therefore, it is suggested the use of damping as a damage indicator for SHM purposes in 

composite materials ( Shahdin, Mezeix, Bouvet, Morlier, and Gourinat, 2009). 

 

Montalvão, Ribeiro, and Duarte-Silva (2009) proposed the use of the Damping Damage Indicator 

(DaDI) based on changes in the modal damping factors between undamaged and impact damaged 

CFRP laminates for the localisation of damage. The authors claim that this is a cost-effective 

approach since, in principle; only two transducers are needed, although more may be necessary to 

improve the reliability of the modal identification process. For this is an EMA based method, a force 

transducer is needed to measure the force at the excitation coordinate. A Laser Doppler Vibrometer 

was used to measure the responses at four different coordinates. However, the uncertainty involved 

in the modal identification process of the modal damping factors still constitutes a hindrance to its 

application. 

 

In order to circumvent the problem with the identification of the modal damping factors in lightly 

damped structures, (Montalvão, Ribeiro, and Duarte-Silva, 2011) proposed a Multi-parameter 

Damage Indicator (MuDI) that makes use of a weighted combination of both the modal damping 

factor and natural frequency changes. They introduced damage in two different sets of CFRP 

laminate plates with different lay-ups (quasi-isotropic and orthotropic). Damage was introduced 

following a quasi-static approach (Herb, and Couégnat, 2010; Othman, Abdullah, Ariffin, and 

Mohamed, 2014; Rilo, Ferreira, and Leal, 2006; Sutherland and Guedes Soares, 2012; J Zhang and 

Zhang, 2015; Jianyu Zhang, Zhao, Li, and Chen, 2015) and was measured based on the quantity of 

energy released during the procedure. The results from numerical simulations and experimental tests 

show that there is a good agreement between the MuDI and damage in the composite laminates. In 

another work, it was also found that as the damage progressively increases, the modal damping 

factors increases too (Montalvão Diogo, Dimitris Karanatsis, António MR Ribeiro, Joana Arina, 

2014). However, the authors observed that despite the approximately direct proportionality 

relationship between structural damping and damage, the changes of the individual modal damping 

factors are not easy to determine.  

 

In an attempt to enhance the precision of the assessment of the modal damping factors, Montalvão 

and Silva (2015) have recently proposed a novel method that is based on the amount of energy 

released per cycle of vibration of a material. In order to determine the effectiveness of the method, 

both numerical and experimental studies were conducted. The results of their study show that the 

proposed method is suitable for lightly damped systems with well-spaced modes (Montalvão and 

Silva, 2015). However, it has not yet been shown if this improves or not the accuracy of the location 

of the damage in CFRPs when using either the DaDI or the MuDI.  

 

Furthermore, Gonilha, Correia, and Cunha (2013) presented modal identification, experimental tests 

on a glass fibre reinforced plastic (GFRP)-concrete hybrid footbridge prototype that is made of a 

thin fibre reinforced deck and two GFRP girders. First, they excited the deck with an impact hammer 

and measured the FRFs. Next, they determined the mode shapes, vibration mode frequencies, and 

damping ratios using input-output modal identification based on the method of rational fraction 

polynomial, and output-only response data. Finally, they compared the experimental data with both 

analytical and numerical simulations to determine the effectiveness of the simulation tools for the 

GFRP-concrete structures. They confirmed that the comparison of experimental data with both 

analytical and numerical simulations shows that these models are suitable for the early stage of 



design to detect possible damages on time. However, an experimental modal identification of a 

comprehensive prototype is necessary.  

 

Also, Kiral, Içten, and Kiral (2012) studied the effect of impact failure on the damping ratio and 

natural frequency of woven-epoxy beams. In their work, varied sizes of damage at various locations 

on the beam were introduced by impact tests. A non-contact vibration measurement system was 

used to record the free vibration responses, and the damping ratios were determined using the 

exponent of the free vibration envelope and logarithmic decrement. Their results show that the 

damping ratio increases as the damage level increases and the natural frequencies are less sensitive 

to damage. However, the sensitivity of damping ratio depends on the proximity of the damage 

location to the clamped edge of the specimen. 

 

3.1.5 Lamb Waves 

 

Lamb waves for damage detection have been used for decades and have received much attention 

from researchers. The application of Lamb waves for damage detection in composite materials 

commenced between the late 1980s and early 1990s Kessler, Spearing, and Soutis (2002). For 

example, Su, Ye, and Lu (2006) reviewed Lamb-wave-based damage detection methods for 

composite materials. They also discussed the propagation mechanisms of Lamb waves in composite 

materials, modelling and simulation, choice of the relevant mode, data collection and signal 

processing.  

Lamb waves can be described as elastic disturbances that travel through thick solid plates without a 

significant decay in intensity (Lee and Yoon, 2016). The two types of Lamb wave modes are 

symmetric (𝑆𝑜) and antisymmetric modes (𝐴𝑜). Also, Kessler, Spearing, and Soutis (2002) used 

Lamb waves for the detection of matrix cracks, delamination, and through-thickness holes in 

graphite/epoxy composite test specimens. The strength of penetration of Lamb waves through a 

material is easily determined by their dispersion curves. The curves show the plot of phase velocity 

versus excitation frequency and the group velocity versus the excitation frequency. The curves are 

generated from the antisymmetric Lamb wave solution (Kessler, Spearing, and Soutis, 2002): 
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where ξ, ζ, and �̅�  are the non-dimensional parameters used to describe Lamb wave propagation in 

isotropic materials. The non-dimensional parameters are as stated: 
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where 𝑐𝑡 , 𝑐𝑙 , 𝑐𝑝ℎ𝑎𝑠𝑒 , 𝑘𝑡  and 𝑡 are transverse (shear) wave velocity, longitudinal (pressure) wave 

velocity, phase velocity, wave number, and time, respectively. These velocities depend on the 

material properties and can be defined by the Lamé’s constants (Lamb, 1917): 
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where 𝜈 is the Poisson’s ratio, ρ is the density, ω is the angular frequency,  𝐸 is the Young’s modulus 

and 𝜇 and 𝜆 are the Lamé’s constants. These equations are important because they show that the 

Lamb wave propagation mechanisms ultimately depend on the constituent material properties, 

reason why they have been proposed by some authors to be used as SHM sensitive features. The 

results obtained from Kessler, Spearing, and Soutis (2002) experiments, indicate that Lamb waves 

are more sensitive to the local impact of damage in composites when compared to the use of FRFs, 

as they can provide more information on the characteristics of incipient damages. Lamb wave based 

damage detection methods  provide better information at low frequencies than at high frequencies, 

typically in the range of 1 to 10MHz (Su and Ye, 2009). Despite their capability to detect damage, 

they have some limitations. An active driving system is required to propagate the waves through the 

structure and the data are relatively complex to interpret (Kessler, Spearing, and Soutis, 2002). 

However, they are suitable for the in situ detection and location of damage in composite materials, 

and can possibly locate damage due to the nature of their local response (Kessler, Spearing, and 

Soutis, 2002). In addition, Cawley and Alleyne (1996) discussed how to excites and receives suitable 

Lamb mode(s) for a better data representation. 

 

Diamanti, Soutis, and Hodgkinson (2005) inspected a monolithic and sandwich composite beam. 

The authors generated 𝐴𝑜 modes at 15 kHz and 20 kHz using piezoelectric transducers (PZT) and 

further applied to identification of delaminations, matrix cracking, and broken fibres. The results 

showed that damage in the sandwich composite beam and CFRP beam were detected and located 

effectively. However, they suggested the combination of Lamb waves and ultrasonic C-Scan 

techniques to quantify damages. 

 

Yang, Ye, Su, and Bannister (2006) adopted finite element models with explicit dynamic analysis 

to investigate excitation, data collection methods and transport phenomenon of Lamb waves through 

composite materials. They used various models of piezoelectric actuator/sensors to measure 

effective shear forces, effective displacements, and effective bending moment excitation modes. 

The numerical simulations show that the adopted models for both 𝑆𝑜  and 𝐴𝑜  modes produce 

consistent results. Nonetheless, even if the sensor model was not suitable for the shear horizontal 

mode, it was able to determine the symmetric and antisymmetric Lamb wave modes. 

 

Ng, and Veidt (2009) proposed the use of an in situ method based on Lamb wave technique to 

monitor and locate damage in fibre reinforced composite laminates. The exact location was detected 

through a graphical representation. They scanned damaged and undamaged specimens using 

networks of transducers. The cross-correlation between the excitation pulse and the envelope of the 

scattered signal was analysed to reconstruct a damage localisation image. The obtained results 

showed that the proposed technique could effectively detect and locate damages that are within the 

area of the network of sensors in the composite laminates. However, the method was not applied to 

a composite complex structure; further study is needed.  

 



With the intent of increasing the effectiveness and accuracy of Lamb waves for the identification of 

delamination in composite laminates, Hu,  Liu, Li, Peng, and Yan (2010) examined the impact of 

the Lamb wave excitation frequency on the strength of the signals reflected due to delamination in 

CFRP laminates. In their research, the authors chose the 𝐴𝑜 mode to enable them to detect minor 

damages. Since within a low frequency band the wavelength of the 𝐴𝑜 mode is smaller than the 

wavelength of  the 𝑆𝑜 mode, 𝐴𝑜 mode is more sensitive to minor damages such as transverse cracks 

and delamination in the composite laminates ( Hu,  Liu, Li, Peng, and Yan, 2010; Kessler, Spearing, 

and Soutis, 2002; Ning Hu, Shimomukai, Fukunaga, and Zhongqing Su, 2008). Hence, Hu, N., Liu, 

Li, Peng, and Yan, (2010) investigated the generation and relationship of the 𝐴𝑜wave mode with the 

delamination at various frequencies. It was confirmed that there was at least one optimal excitation 

frequency that produces the reflected signals with the highest intensity from the delamination. The 

results revealed that the optimal excitation frequencies are all within the range of the natural 

frequencies of the local delaminated areas like the pure flexural vibration modes – the deformation 

pattern of the 𝐴𝑜 mode. 

 

Okabe, Fujibayashi, Shimazaki, Soejima, and Ogisu (2010) evaluated the characteristics of the 

broadband of Lamb wave generation using a system that incorporates macro fibre composite (MFC) 

actuators and fibre Bragg grating (FBG) sensors. The MFC generates the Lamb waves into the 

composite laminates and the FBG is used to collect the emitted signals for analysis. They separated 

the Lamb waves in the composite laminate into 𝑆𝑜 and 𝐴𝑜 modes by using MFCs that are localised 

together to excite the Lamb waves and using two FBGs installed on the laminate as receivers. Both 

experimental and numerical analysis was conducted to confirm the proposed technique. The results 

showed that the method could be used in detecting the size of a delamination in a CFRP quasi-

isotropic plate. Although the authors could detect delamination, other types of damages in 

composites were not analysed.  

 

Manson, Worden, Monnier, Guy, Pierce, and Culshaw (2011) decided to publish the studies they 

conducted between 1998 and 2001 on damage assessment in smart composite structures because of 

the applicability of their findings. Their studies were phased in two stages: (i) the evaluation of the 

suitability of Lamb waves for damage inspection in composite plates and (ii) the assessment of the 

application of novelty detection based on Lamb wave scattering for detecting minor damages in 

composite plates. A novelty detection is based on the difference between the normal condition of 

the structure and the measured data ( Manson, Worden, Monnier, Guy, Pierce, and Culshaw, 2011). 

Damage was introduced on a square CFRP plate with a  0° - 90° weave of fibres, by drilling several 

holes. At the final stage, they introduced BVID, characterised by an internal delamination, through 

a controlled impact on the composite laminate. 5 − cycle tone bursts at 280 kHz and 115 kHz were 

used to excite the 𝑆𝑜  and 𝐴𝑜  modes respectively. The Lamb waves were generated from a 

piezoelectric disc. The results obtained showed that Lamb waves are effective in detecting 

considerably small damages in composite laminates. However, changes in the environment of the 

structure, operating conditions, like temperature and moisture (Tjirkallis and Kyprianou, 2016) or 

variation in the instrumentation, have a strong impact on the accuracy of the damage detection 

method.  

 

The effectiveness of the 𝐴𝑜 mode in detecting small damages within low frequencies in composite 

materials has increased its application in SHM. Mustapha, Ye, Wang, and Lu, (2011), used 𝐴𝑜 

modes to estimate debonding in a sandwich (with a core) carbon fibre/epoxy plastic (CF/EP) 

composite structures. Sandwich structures usually are lightweight, possess high bending stiffness 

and have excellent dynamic properties ( Mustapha, Ye, Wang, and Lu, 2011). These properties have 

increased their applicability in the construction, aerospace, and manufacturing industries. 



Unfortunately, impact loads tend to initiate, debonding between the core at the centre and the two 

faces that sandwich it, thereby reducing the component’s mechanical properties. No matter how 

small the defects at the skin-stiffener connection are, they can influence the performance of the 

structure ( Ooijevaar, Rogge, Loendersloot, Warnet, Akkerman, and Tinga, 2015). The primary 

limitation of a sandwich structure is that it hides defects, which makes it difficult to detect damage 

through visual inspection and many other NDT methods. ( Mustapha, Ye, Wang, and Lu, 2011) 

investigated the impact of the size of debonding on the delay in time of flight (ToF) and energy of 

the reflected signals of the 𝐴𝑜 mode of low frequency in the sandwich of CP/EP composite beams. 

In their study, they initiated debonding in the beams at varying locations. They used an active signal 

generation to activate the signal and a data acquisition system was used to collect Lamb wave signals 

for analysis. A 5 − cycle sinusoidal toneburst was generated and the Lamb waves were collected by 

a PZT sensor. In their work, they could locate debonding using the ToF of the waves reflected by 

the damage. The results show that 𝐴𝑜  modes can be used to determine debonding in sandwich 

composite beams in the low frequency ranges of 0 to 30 kHz. However, the correlation between the 

level of debonding and the ToF of the waves reflected by damage (debonding) is not unique. 

 

Zhao, Royer, Owens, and Rose (2011) assessed the health of structures by observing the deviation 

of Lamb waves during propagation through the structure. The areas where the deviations occurred 

were mapped out based on ultrasonic Lamb wave tomography imaging. The result shows that 

tomographic imaging enables the Lamb waves to visually represent and monitor damage in 

structures. 

 

Ben, Ben, Vikram, and Yang (2013) suggested the use of ultrasound-based Lamb wave propagation 

to locate and assess damage in composite materials. The presence of damage in a structure would 

cause the Lamb waves to deviate from its path of propagation, which is normally in a straight path, 

affecting its intensity too. This means that the size of Lamb waves excited into a damaged structure 

is reduced when extracted from the receiving end for analysis. This was the idea behind (Ben, Ben, 

Vikram, and Yang, 2013) research work. Their results show the effectiveness of ultrasound-based 

Lamb wave method for damage detection in composite structures, as confirmed by several other 

researchers (Carboni, Gianneo, and Giglio, 2015; Ramadas, Padiyar, Balasubramaniam, Joshi, and 

Krishnamurthy, 2011; Rathod and Roy Mahapatra, 2011).  

 

Keulen, Yildiz, and Suleman (2014) proposed a sparse network that can identify damage over a 

wide range of the composite material. They utilised an algorithm that considers the damage 

progression history in composite materials for better damage identification in structures. The method 

used a hexagonal arrangement of 12 PZTs, against the dense network of transducers that is usually 

necessary to monitor larger areas. The Lamb waves were actuated by one of the transducers through 

the test specimen and other transducers were used to receive and collect the data. The results showed 

that the inclusion of damage progression history increased the efficiency of identifying possible 

damage within a range of 12 mm of the confirmed damage to the material. However, the application 

of this method is time consuming. 

 

Carboni, Gianneo, and Giglio (2015) studied how Lamb waves travel through materials to design a 

single mode of propagation method for damage identification. This method would ease the 

interpretation of Lamb waves. A CFRP laminate was used for the experiment. They characterised 

the elastic properties and the scattering behaviour of Lamb wave propagation through the composite 

laminate. A statistical approach was used to determine primary factors affecting the sensitivity 

response against artificial and natural delamination in a composite laminate. One of the results 

obtained suggest that the analysis of the elastic signal waves received by PZT sensors could be 

simplified by actuating the Lamb waves within the frequency range of 0 - 50 Hz. 



 

More recently, Mustapha, Ye, Dong, and Alamdari (2016) used guided ultrasonic wave signals 

based on a pitch and catch configuration of PZT actuator and sensors to determine the size of BVID 

in CF/EP sandwich beam and panels introduced by a step-wise quasi-static indentation. They used 

the deviations in the characteristics of 𝐴𝑜 and 𝑆𝑜 modes and correlated them with the damage size. 

Three PZTs were installed on the test specimen: one was used as the actuator and the remaining two 

as sensors. A tone burst of 60 𝑉𝑜𝑙𝑡 confined in a Hanning window serves as the input signal for the 

actuator. It was seen from the results that residual deformations on the skin were about the same to 

the extent of the dent and the damaged location within the honeycomb core. Again, the two modes 

of Lamb waves were sensitive to even a 0.2 mm size of a dent on the composite laminate. 

 

3.2 Acoustic-based 

3.2.1 Acoustic Emission 

 

According to Mba and Rao (2006), acoustic emission (AE) was originally developed as a technique 

for non-destructive testing (NDT) to monitor and sense cracks in structures and materials. Sensors 

are used to pick up and analyse the attributes of transient elastic waves (stress waves) generated by 

crack growth and propagation ( Carpinteri, Lacidogna, Accornero, Mpalaskas, Matikas,  and 

Aggelis, 2013; Yun, Choi, and Seo, 2010). When loads are exerted on a structure that has a crack, 

the crack may generate stress waves, which are picked up by the AE sensor mounted on the surface 

of the structure, as illustrated in the schematic example in Fig. 3.2. 

 

Figure 3.2 Stress waves due to the presence of crack in a material under stress. 

AE is highly sensitive to the development of damage in composite structures. However, in order to 

explore the full potential of AE in SHM applied to composite materials, the velocity and attenuation 

of sound wave propagation in composite materials should be known. AE techniques can be used to 

study the damage propagation and characterise its failure mechanisms in composite structures 

(Selman, Ghiami, and Alver, 2015). Researchers like Mechraoui, Laksimi, and Benmedakhene 

(Mechraoui, Laksimi, and Benmedakhene, 2012) analysed the propagation and the evolution of 

velocity of acoustic waves in glass/epoxy composite materials. In their study, after conducting a 

static bending test, they analysed the damage mechanisms based on amplitude correction. They 



measured the real velocity based on the difference between the arrival times of each signal and the 

location of sensors in order to localise the different mechanisms of damage on the specimen such as 

delamination, crack, and the fibre break. The measured velocity was compared with the value of the 

theoretical velocity determined with theoretical model analysis. The AE was able to localise the 

introduced damages on the composite plate. However, based on attenuation curve, amplitude 

correction can be used to enhance the localisation of damage in the test specimen. With this method, 

the amplitudes of the signal can be obtained without attenuations. See more information in 

(Mechraoui, Laksimi, and Benmedakhene, 2012). 

 

Liu, Chu, Liu, and Zheng (2012) studied the damage growth and the failure mechanisms in carbon 

fibre/epoxy composite laminates having different lay-up patterns with holes at their centres using 

AE techniques. They extracted representative features such as counting, energy, and amplitude with 

the load history in order to investigate failure mechanisms of composites. Their work was not 

comprehensive, as they only tried to establish the true mapping between the AE responses and 

properties of failure of composites. Their research does not consider impact damage, but only 

focused on composite laminate with holes. 

 

Yun, Do, Choi, and Seo (2010) investigated the suitability of the AE approach to monitoring the 

damage progression in reinforced concrete (RC) beams strengthened in flexure with CFRP sheets. 

Their aim was to develop a health monitoring method based on AE techniques for RC structures 

that are strengthened with CFRP sheets. They considered the effectiveness of the strengthening 

based on the numbers of layers of CFRP sheets and the imperfections of the construction. In order 

to simulate imperfection in the construction, the CFRP was bonded without adhesive inside 10% 

and 20% area of the bonding area of the CFRP sheets. The AE signals were extracted and studied 

for all test specimens. The results of their analysis show that, depending on the active mechanism 

of damage, the characteristics of the signal – event, amplitude versus duration and amplitude versus 

frequency - has differences in the various stages of loading.  

 

Also, Noorsuhada (2016) conducted an extensive review of the use of AE techniques for the 

assessment of fatigue damage in RC structures. From the review, it was identified that fatigue 

damage test of RC structures based on increasing fatigue load is limited, and AE analyses such as 

intensity analysis, AE parameter analysis is limited. Aggelis, Barkoula, Matikas, and Paipetis (2012) 

studied the fracture behaviour of composite cross-ply laminates using both ultrasonic and acoustic 

techniques. In their study, they use tension-tension fatigue and incremental loading until the 

specimen failed. The results show that AE activity is highly related to the accumulation of damage 

in incremental tensile step loading. The results from the numerical simulation indicate that damage 

isolates the distinct layers due to the specific geometry of laminates. Huang, Zhang, and Li (2013) 

suggested an approach for the localisation of AE in a marble stone using distributed feedback (DFB) 

fibre lasers, with the objective of identifying damage in civil structures. 

 

In order to increase the effectiveness of the AE technique for SHM in textile reinforced cement 

(TRC), Blom, Wastiels, and Aggelis (2014) relate acoustic emission parameters to the mechanisms 

of fracture that contributed the most to the failure of the composite laminate. The primary parameters 

of AE signals are the activity, a total number of events, and energy (Bobrov and Stepanova, 2013). 

Hamdi, Le Duff, Simon, Plantier, Sourice, and Feuilloy (2013) extracted suitable damage 

descriptors using the Hilbert-Huang transform (HHT) for the understanding of AE patterns. This 

approach contributed to the understanding of damage evolution in structures. It provided relevant 

results for the extraction of non-stationary acoustic emission waves. Again, Blom, El Kadi, Wastiels, 

and Aggelis (2014) monitored the flexibility of TRC laminates using AE technique. They observed 

that AE was able to monitor the failure mechanisms and also identify the stress field. Bravo, Toubal, 



Koffi, and Erchiqui (2015) used the AE technique to examine the process of damage evolution in 

bio and green composites. Recently, Fotouhi, Suwarta, Jalalvand, Czel, and Wisnom (2016) 

investigated the relationship between the corresponding damage mechanism in thin-ply 

unidirectional carbon/glass hybrid laminates undergoing tensile loading and AE events. In their 

work, they established a criterion that is based on the values of energy and amplitude to identify the 

fragmentation failure mode. The evolution of damage in the test specimen was monitored with the 

cumulative amount of the AE signals. It was concluded that the method can be used to characterise 

the mechanisms of failure in hybrid laminates and can detect damage initiation and propagation. 

Akil, De Rosa, Santulli, and Sarasini (2010) compare the notch and flexibility of pultruded jute/glass 

and kenaf/glass hybrid polyester composites by monitoring them with acoustic emission technique.  

Pultrusion is a technique used for the fabrication of composite materials with a better reinforcement, 

tensile strength, and consistent quality (Baran, Tutum, Nielsen, and Hattel, 2013)(Carlone, Baran, 

Hattel, and Palazzo, 2013)(Novo, Silva, Nunes, and Marques, 2016). Aymerich and Staszewski 

(2010b) established the use of the nonlinear acoustic technique for detection of impact damage in 

composite laminates. They introduced a high-frequency acoustic wave to a piezoelectric sensor at a 

location on the composite and receive it with another sensor.  An electromagnetic shaker was used 

to excite a low-frequency flexural mode to induce damage. A pattern of sidebands close to the 

acoustic harmonic in the power spectrum indicates the damage caused by the impact on the 

specimen. It was confirmed that there is a linear relationship between the magnitude of the sidebands 

and the severity of damage in the specimen. However, they observed that the responses to different 

boundary conditions for the healthy and damaged specimens were not uniform. Further studies were 

required to identify and characterise the non-damage related nonlinearities.   

 

3.2.2 Ultrasonic Inspection 

 

Ultrasonic inspection methods are capable of detecting defects (delamination, porosity, crack, etc.) 

and providing mechanical properties (e.g., anisotropic elastic constants) on composite materials 

after the damage has been introduced (Potel, Chotard, de Belleval, and Benzeggagh, 1998).  

The multi-layered arrangement of composite laminates makes it quite complex to detect damage 

when compared to metals. This is due to the anisotropic properties of the constituent materials and 

a sensitivity to echoes ( Ng, Ismail, Ali, Sahari, Yusof, and Chu, 2011). During the damage detection 

procedure, echoes from the particles from the composite materials disturb the elastic waves from 

the damage, hence polluting the original signal from the damage. Hence, it is required to filter the 

unwanted echoes in order to detect any incipient damage in the composite structure. 

Matrix cracking in composite laminates has been a source of concern in the engineering industry 

because it usually is the first flaw to occur. As such, several techniques have been developed to 

detect and locate them during the initiation stage (Steiner, Eduljee, Huang, and Gillespie Jr, 1995). 

Aymerich and Meili (Aymerich and Meili, 2000) analysed matrix cracking and delamination in 

composite laminates through ultrasonic inspection. In their work, they scanned test specimens with 

ultrasonic oblique and normal incidence in a pulse-echo (or one-sided) mode using a focused 

broadband transducer. The results indicated that the technique was effective in detecting matrix 

cracking in the composite. However, the oblique incidence ultrasonic method is more sensitive to 

matrix cracking, while the normal incidence ultrasonic method is more effective for delamination. 

 

Kinra, Ganpatye, and Maslov (2006) established an ultrasonic backscattering method to detect 

matrix cracks in ply-by-ply graphite/epoxy composite laminates. The ultrasonic backscattering 

method uses an oblique incident beam. A SONIX FlexSCAN ultrasonic scanning system was used 

for the data collection. Results show that the identification of matrix crack in the mid-ply does not 

depend on the damage in the intermediate plies. In other words, damage in the intermediate plies 



does not suggest that the middle plies would have damage too. Also, Hosur, Murthy, Ramamurthy, 

and Shet (1998) used ultrasonic C-scan to detect and map delamination in CFRP laminates. They 

developed a software called IMPCTDAM to analyse the raw images from the C-scan and quantify 

the level of damage. A C-scan enables the determination of the thickness of the material, damage 

location and possibly the severity of the damage in it (Hasiotis, Badogiannis, and Tsouvalis, 2011). 

In their work, they made some general assumptions based on their results: the impact damage 

increases as the depth increase until it attains maximum size; the behaviour of the composite 

laminate undergoing compression and buckling due to impact loading can be studied using data 

from the maximum delamination and its position, etc.   

 

Ng, Ismail, Ali, Sahari, Yusof, and Chu (2011) applied the ultrasonic technique to investigate 

delamination in multi-layered glass reinforced plastics. The defect in the glass fibre reinforced 

laminate was detected and located with a single transducer based on pulse-echo mode, and the 

signal-to-noise ratio (SNR) was enhanced with the use of a split spectrum processing (SSP) method 

in order to achieve a clear representation of the signal from the damage in the laminates. The SSP 

conditioners filter the interfering echoes from the particles of the constituent laminates. The 

technique is based on the analysis of the frequency of the signal spectrum.  

 

In another application, Sharma, Sharma, Sharma, and Mukherjee (2015) reaffirmed the effectiveness 

of the ultrasonic inspection technique in damage detection, by using it to monitor the initiation and 

evolution of corrosion in concrete reinforcing bars in concrete after being repaired with glass and 

carbon fibre sheets. The results obtained show effectiveness of the ultrasonic guided waves to 

monitor the evolution of corrosion in the test structure. Although their study was conducted at a 

laboratory scale, it is claimed that it can be extended to a full-scale structure by scaling up the 

ultrasonic pulse energy. 

 

3.2.3 Acousto-Ultrasonic 

 

Acoustic-ultrasonic (AU) based methods uses two ultrasonic sensors, each located at different points 

on the test specimen. AU methods are NDE techniques developed around the late 1970s to determine 

the mechanical properties of composite structures (Vary, 1981; Vary and Bowles, 1978). One of the 

sensors serves as an actuator used to initiate the ultrasonic wave through the test material, whereas 

the other is the receiver of the reflected AU transient stress wave used for analysis. A pulsing PZT 

initiates broadband ultrasonic stress waves in the test specimen (Gyekenyesi, Morscher, and 

Cosgriff, 2006; Loutas and Kostopoulos, 2009a). This technique measures the relative efficiency of 

AU signal propagation across the test material (Barbezat, Brunner, Huber, and Flueler, 2007). The 

presence of damage in a material reduces the strength of the AU signal that is transmitted through 

it. Gyekenyesi, Morscher, and Cosgriff (2006) used the AU technique to investigate the presence of 

damage and stress levels in two ceramic composites under loading, unloading, and reloading tensile 

tests. Their aim was to show the possibility of using AU as an in-situ NDE technique for damage 

monitoring for two types of silicon carbide fibre/silicon carbide matrix (SiC/SiC) composite systems 

and stress dependence of the AU method. They loaded the test samples mechanically in the 

load/unload/reload runs to determine the impact of stress levels on the AU waves. The results 

indicated that the enhanced matrix composite labelled HN-C-ENH has a higher transverse crack 

density than the standard matrix composite, HN-C-STD. From the analysis of AU parameters, the 

mean square value of the power spectral density was able to monitor the accumulated damage more 

consistently Gyekenyesi, Morscher, and Cosgriff (2006). In addition, the AU measurements related 

to the HN-C-ENH composites did not indicate stress dependence, whereas the AU measurements 

related to the HN-C-STD version did (Gyekenyesi, Morscher, and Cosgriff, 2006). 



 

Loutas and Kostopoulos (2009a) monitored the evolution of damage in carbon/carbon (C/C) 

reinforced composite laminates that are subjected to loading, unloading, and reloading, using AU 

based methods. The comprehensive details of the experimental method and material characterisation 

can be found in (Loutas and Kostopoulos, 2009b). A pulse generator and a transducer were used to 

introduce the AU stress waves into the test specimen. A similar transducer was used to collect the 

reflected AU stress due to the applied load. It was confirmed that the AU technique is suitable for 

monitoring the damage evolution in composite materials, including delamination (Chrysochoidis, 

Barouni, and Saravanos, 2011). The scope of their research was restricted C/C woven composites, 

other forms of composite laminates need to be analysed.  

 

Loutas, Vavouliotis, Karapappas, and Kostopoulos (2010) investigated the efficiency of AU 

measurements in the development of damage in CFRP laminates during fatigue tensile loading.  

Damaged and undamaged composite laminates were used for the experiment, to compare the 

deviations in the measured parameters. They CNTs to modify the epoxy matrix of quasi-isotropic 

carbon fibre reinforced laminates. The aim was to monitor the accumulation of damage in the test 

specimens during fatigue. In their work, they also tested four composite specimens with the 

measurement of AU signals at 80% stress level of the maximum tensile stress. The idea was to 

confirm if the AU wave parameters separated from the emitted signals change in a monotone 

manner, which could be a pointer to the evolution or accumulation of damage in the laminate. The 

authors were able to monitor the initiation, evolution, and the accumulation of damage during the 

fatigue tests. However, further investigation is required to expand the applicability of the method. 

 

Torres-Arredondo, Tibaduiza, McGugan, Toftegaard, Borum, Mujica, Rodellar, and Fritzen (2013) 

applied AU for the detection and classification of damage to CFRP sandwich structures. They 

mounted four transducers separated at equal distances on the surface of the test specimen and 

introduced varying types of damage on the test specimen. The authors used an excitation signal of 

12 Hanning windowed cosine train signal with 5-cycles and a 50 kHz carrier frequency in order to 

boost the propagation efficiency of the AU signals through the material. In their study, a method 

that is based on hierarchical nonlinear PCA, square prediction measurements, and self-organising 

maps, was applied in order to detect and locate damage. The technique was also able to characterise 

fatigue damage in aluminium plates (C. Zhou, Hong, Su, Wang, and Cheng, 2013). The researchers 

only focused on sandwich structures such as carbon fibre plastic and glass fibre plastic sandwich 

structures; application of the technique on other composite structures would be plausible. 

3.2.4 Vibro-Acoustic 

 

Vibroacoustic modulation techniques are highly sensitive to the presence of nonlinearities (Yoder 

and Adams, 2010). In the vibroacoustic modulation technique, the structure is excited with a 

pumping signal while it is simultaneously interrogated with a more sensitive probing signal (Yoder 

and Adams, 2010). According to Aymerich and Staszewski (2010a), vibroacoustic techniques are 

sensitive to cracks in structures (Yoder and Adams, 2010). Hence, several researchers have used 

this technique to detect fatigue cracks in metallic structures effectively (Dutta, Sohn, Harries, and 

Rizzo, 2009; Kim, Adams, Sohn, Rodriguez-Rivera, Myrent, Bond, Vitek, Carr, Grama, and Meyer, 

2014; Ryles, Ngau, Mcdonald, and Staszewski, 2008), but application in composite structures still 

is limited (A. Klepka, Pieczonka, Staszewski, and Aymerich, 2014). Aymerich and Staszewski 

(2010a) monitored low impact damage in a rectangular laminated composite plate. They excited the 

composite plate with a constant amplitude probing signal and slow amplitude-modulated vibration 

pumping signal simultaneously. The pumping signal was introduced to the specimen with an 

electromagnetic shaker. Experimental results indicated the amplitude of the sidebands is related to 



the amount of damage in the plate. However, more study is required to determine the sensitivity of 

the method to different forms and severities of damage in composite laminates. 

 

Klepka, Staszewski, di Maio, and Scarpa (2013) used a nonlinear vibroacoustic modulation to detect 

damage in composite chiral sandwich panels. The authors used low-profile PZTs to actuate the 

ultrasonic wave in the test specimen, and an SLDV to acquire the vibroacoustic waves. The results 

show the effectiveness of this technique in detecting debonding between the composite surface and 

the chiral core, which was verified by a classical vibrothermographic analysis ( Klepka, Staszewski, 

di Maio, and Scarpa, 2013) and is in agreement with the results presented in (Aymerich and 

Staszewski, 2010a). Unfortunately, the vibrothermographic test could not detect damage in its early 

stage, except large when the damage increases; which may be due to poor sensitivity. In addition, 

Sarigül and Karagözlü (2014) examined the impact of the type of composite material, the number 

of layers and orientation of ply on the coupled vibroacoustic properties of plates – their natural 

frequencies - by conducting a regression analysis. However, they only conducted numerical 

analysis, without validating their results with experiments. Hence, numerical analysis alone would 

not be sufficient to make a conclusion. 

 

Klepka, Pieczonka, Staszewski, and Aymerich (2014) also studied the effect of low and high-

frequency excitations in non-linear vibroacoustic. The authors observed the nonlinear modulations 

in ultrasonic waves due to damage in composite chiral sandwich panels using high frequency 

ultrasound and low-frequency modal excitations. The spectra of the signal response indicated only 

the frequency components related to the propagating ultrasonic wave and the low-frequency 

excitation when the specimen is undamaged. In the presence of damage, there are additional 

sidebands around the two main ultrasonic components (Aymerich and Staszewski, 2010a; Klepka, 

Pieczonka, Staszewski, and Aymerich, 2014; Klepka, Staszewski, di Maio, and Scarpa, 2013; Yoder 

and Adams, 2010). The level of damage in the structure relates to a number of sidebands and the 

amplitude of the sidebands depends on the intensity of modulation. Nonetheless, when analysing 

damage identification a careful selection of both low and high frequency excitation is necessary. 

This requires some expertise in order to choose the right values. Furthermore, more research is 

required to determine the impact of the resonance frequency of the local defect on the enhanced 

nonlinear vibroacoustic modulations. 

 

Likewise, Pieczonka, Ukowski, Klepka, Staszewski, Uhl, and Aymerich (2014) detected BVID in 

light composite sandwich panels using the nonlinear vibroacoustic modulation method. The authors 

considered different levels of damage in two damaged and undamaged panels. They were able to 

detect the severity of damage based on the intensity of modulation (number and amplitude of 

sidebands). It was observed that as damage increases, the modulation intensity increases. 

Vibrothermographic inspection of the specimens was used to validate the results from the 

vibroacoustic analysis. However, there was no explanation of the modulation that are not related to 

damage. This would require further studies to explain those modulation nonlinearities. Besides, the 

experiment should be extended to other damage types and complex composite structures. 

 

 

3.3 Instrumentation-based 

3.3.1 Sensor Networks 

 

Due to the continuous technological advancement in the area of SHM, composite laminates can be 

embedded with sensors in order to enhance effective monitoring and detection of damage initiation 



and progression. However, this must be done during the manufacturing process and it often 

compromises the stiffness and strength of the composites. Masmoudi, El Mahi, and Turki (2015) 

investigated the effects of embedded piezoelectric sensors on the bending fatigue strength of 

composite laminates. They examined and compared the results from composite laminates with and 

without embedded sensors using AE to capture and monitor the generated transient elastic waves. 

A classification k-means method was used to evaluate the acoustic signature in order to determine 

the evolution and various failure modes in composites with and without embedded sensors. It 

observed that the mechanical behaviour of both types of composites indicates no difference in form, 

but the composite with embedded sensors was more sensitive to damage than the one where the 

sensor was mounted to the surface of the structure. Although methods based on embedded sensors 

are usually cost-effective to implement (Alexopoulos, Bartholome, Poulin, and Marioli-Riga, 2010), 

care must be taken to avoid excessive weight and reduced mechanical properties of the composite 

materials, since the embedded network of sensors will be part of the structural component. 

 

Ghezzo, Starr, and Smith (2010) investigated the effect of integrated sensors on the integrity and 

mechanical response in fibreglass epoxy laminates. In their work, monotonic tensile tests on 

fibreglass epoxy laminates were conducted to monitor the initiation of damage and detect damage. 

From the results, it was shown that the initiation of debonding starts at the bond between the 

implanted sensor and the composite resin. Due to the high-stress levels, cracks occur around the 

specimen. They concluded that, although integrating a sensor network in composites is feasible and 

effective for damage identification, care must be taken in the design of the sensor, the method of 

integration, data collection, signal processing and analysis, and the estimation of the changes in the 

mechanical performance due to the presence of embedded sensors ( Ghezzo, Starr, and Smith, 2010). 

Nonetheless, their research was conducted in a controlled environment – laboratory. Hence, before 

drawing any conclusion the method needs to be implemented in-situ.  

 

Alexopoulos, N. ., Bartholome, C., Poulin, P., and Marioli-Riga (2010) integrated conductive CNT 

fibres to nonconductive GFRP test specimens in order to determine the behaviour of the material 

under different loading conditions by measuring the variations in the electrical resistance on the 

CNT fibre. They correlated the response of the GRFP to mechanical load and the electrical resistance 

measurements of the embedded CNT fibres to monitor and detect damage. The correlation between 

the two parameters depends on the loading history of the material. According to the authors, the 

advantage of using CNT fibres is that they are easy to insert and do not reduce the mechanical 

properties of the material. Based on their results, it was concluded that the CNT fibres have a better 

sensing and damage monitoring capability of non-conductive composites than embedded carbon 

fibres and modified (doped) conductive matrices. Having embedded CNT fibre in GFRP, it would 

be good to consider CFRP coupons with embedded CNT fibre for further investigation.  

 

Ksouri, Matmat, Boukabache, Escriba, and Fourniols (2011) installed an accelerometer sensor 

network on a composite laminate to examine the response of the composite structure to an impact 

load. In their work, they introduced shock propagation waves through the network of accelerometer 

sensors. The idea was to compare the responses received from the accelerometers before and after 

the initiation of damage. The results indicate that the method was suitable for the detection of 

damage to the composite structure. However, the method was unable to localise damage in the 

system.  

 

Giurgiutiu and Santoni-Bottai (2011) examined the advantages of the use of embedded piezoelectric 

wafer active sensors to impart and receive elastic waves for damage detection and localization in 

unidirectional and quasi-isotropic composite plates. While some conventional ultrasonic transducers 

function through the application of vibration, pressure on the test surface, the piezoelectric wafer 



active sensors function through surface pinching and are strain coupled with the surface of the 

structure (Giurgiutiu and Santoni-Bottai, 2011). The authors claim that this improves the 

performance over ultrasonic transducers in the transmission and reception of elastic stress waves. In 

addition, piezoelectric wafer active sensors are less expensive, lightweight and can be used for SHM 

in large structures.  

 

Nauman, Cristian, and Koncar (2011) conducted a three-point bending tests on multilayer composite 

laminate specimens with two embedded sensors at different locations in order to determine the 

behaviour of the material during bending. The sensors are positioned in such a way that they can 

monitor compression and traction deformations in the material and can also detect the matrix 

fracture initiation and propagation (Nauman et al., 2011). The embedded sensors were able to 

generate the stress-strain history of the test specimens. The results from the three-point bending test 

provide information on the health of the specimen and data related to the propagation of the crack, 

delamination, and fracture inside the material under quasi-static loading. However, there needs to 

be an improvement of the sensor’s sensitivity and bandwidth and compatibility between the 

embedded sensors and with carbon or other multifilament tows that are used as fibre reinforcements. 

 

Dziendzikowski, Dragan, Kurnyta, Kornas, Ł.Latoszek, Zabłocka, Kłysz, Leski, Chalimoniuk, and 

Giewoń (2014) conducted an impact test on a CFRP laminate with an embedded network of PZT 

sensors. The aim was to determine the effectiveness of the embedded network of sensors in detecting 

BVIDs. Three impacts with different energies were applied to the test specimen and the emitted 

elastic stress waves were received by the PZT network for analysis. The health of the test specimen 

was determined from the selected signal characteristics known as damage indices. Notwithstanding, 

apart from damages, other factors such as weather can have an effect on the signal acquired, which 

can result in a false positive or false negative indications ( Dziendzikowski, Dragan, Kurnyta, 

Kornas, Ł.Latoszek, Zabłocka, Kłysz, Leski, Chalimoniuk, and Giewoń, 2014). In order to avoid 

that, the authors suggested that there should be a balance between the level of sensitivity of the 

damage indices to damages and the stability of the damage indices under different working 

conditions of the PZTs.  

 

Luo and Liu (2014), integrated graphite nanoplatelets (GNPs) into an epoxy/fibreglass composite 

laminate. The GNP thin fibre sensor enabled to determine the state of the local resin curing in the 

composite material during the manufacturing process (Luo and Liu, 2014). In addition, it was able 

to map out the state of stress and strain in the material when under load. The embedded GNPs in the 

composite laminate make the structure smart, in such a way that it enables the structure to act as a 

sensor that is capable of self-monitor its damage condition. According to the authors, the GNP fibre 

sensor is currently only suitable for non-conducting composite materials. Hence, it is yet to be 

applied to conductive composites such as CFRPs.  

 

Cenek, Mudit, and Radek (2014) conducted a series of tests to detect and locate low energy impact 

damages in carbon composite materials by embedding piezoelectric sensors in three different 

layouts at different depths. The sensors were installed on a lean, flexible printed circuit before 

integrating them into the composite laminates. The results from the experiments show that all the 

layouts were able to detect the impact energies applied to the test specimens, but the sensors that are 

close to the surface of the specimen are more sensitive. However, even if the authors were able to 

detect and locate damage, the method was not sufficient to determine its type and severity. 

 

As mentioned earlier, one limitation of embedding sensors in composite structures is that this may 

impact on their host’s mechanical properties (Lang, Boll, and Schotzko, 2012), for example through 

the addition of weight.  This challenge has engaged several researchers in the attempt to devise 



means to reduce the weight contribution from the sensors, while at the same time the reliability and 

durability are not compromised. Through miniaturisation of the embedded sensors, the impact may 

be noticeably reduced, thereby maintaining the original properties of the composite structure almost 

unchanged. To this end, (Salas, Focke, Herrmann, and Lang, 2014) designed a miniature wireless 

sensor network that works through an inductively coupled coil. The authors confirmed the 

possibility of generating power using inductive coils for a piezoelectric wafer active sensor system 

in CFRP composites for SHM. However, CFRPs are found to introduce limitations in the power 

transmission due to the conductive nature of carbon fibres. 

 

Lu, Jiang, Sui, Sai, and Jia (2015) used fibre Bragg grating (FBG) sensors to detect structural 

dynamic response signals from CFRP structures and extracted the damage characteristic through 

Fourier transform and principal component analysis (PCA) methods. The dynamic response signal 

was generated by an active actuation method. From the damage characteristics, acquired, they were 

able to detect damage with a one-class support vector machine technique and the localization and 

severity of damage were achieved with multi-class C-support vector classification techniques. In 

their study, the accuracy of the damage detection was claimed to be above 90%. However, there are 

challenges associated with the use of FBGs in composite structures. For example, Kinet, Mégret, 

Goossen, Qiu, Heider, and Caucheteur (2014) reviewed some challenges due to the use of FBGs in 

composite materials. In their study, they analysed the problems linked to the demodulation of the 

amplitude spectrum during and after the curing process, the distinction between the effect of 

temperature and strain, and the relation between the integrated optical fibres and the surroundings.  

 

The presence of micro-cracks in the composite structure tampers with its contour by increasing the 

surface roughness. Such changes on the surface can be used to monitor the health of structures and 

detect damage by measuring the surface roughness (Zuluaga-Ramírez, Frövel, Belenguer, and 

Salazar, 2015). Zuluaga-Ramírez, Arconada, Frövel, Belenguer, and Salazar (2015) measured the 

surface roughness of CFRP test specimens with a confocal microscope in order to assess the 

development of surface roughness due to fatigue loads applied on the structure. In their study, loads 

were applied based on the standard load sequence for fighter aircraft. The authors thoroughly 

scanned the test samples vertically in order not to miss any point. They ensured that every point on 

the surface of the test material passes through a pinhole to the focus plane. Results indicated that 

fatigue loads are the prime culprits that cause surface roughness, affecting the topography of the 

composite structure surface.  

 

3.3.2 Eddy Currents 

 

Eddy-current based techniques work on the basis of electromagnetism, whereby the conductivity of 

a material can be detected without having contact with it (Yin, Withers, Sharma, and Peyton, 2009). 

Khandetskii and Martynovich (2001) applied an eddy-current technique to detect damage near the 

edges of composite laminates. They used a finite difference method to study a two-dimensional 

model of carbon reinforced composite material that was made up of alternating layers of the 

reinforcing fabric and binding material with delamination on a boundary between layers 

(Khandetskii and Martynovich, 2001). The authors mounted a rectangular eddy-current transducer 

on the edge of the specimen to generate a vector potential field. The results obtained from the 

calculations at different widths of the delamination suggest that the modulation pulse width due to 

damage is almost a linear function of the width of the delamination.  

 

Bonavolontà, Valentino, Pepe, and Bonavolontà, Valentino,  and Pepe (2007) recommended the use 

of an eddy-current method based on a high temperature superconducting quantum interference 



device (HTS-SQUID) to assess a glass laminate aluminium reinforced epoxy (GLARE) structure. 

The HTS-SQUID sensor is sensitive to any deviation in the magnetic field due to incipient damage 

in the composite material even at a low excitation frequency ( Bonavolontà, Valentino, Pepe, and 

Bonavolontà, Valentino,  and Pepe, 2007). The authors used a steel impactor to introduce different 

flaws on the GLARE specimen by changing the level of impact between the range of 5J and 36J. 

Results showed the effectiveness of the eddy-current method based on the HTS-SQUID 

magnetometer to analyse the various damage stages in GLARE composites. Additionally, 

experimental results showed that the mechanical properties of the fibre/metal laminate under stress 

could be determined using the eddy-current method based on the HTS-SQUID magnetometer. 

 

Furthermore, Bonavolonta, Valentino, Marrocco, and Pepe (2009) expanded the application of 

eddy-currents to the identification of damage in GLARE composite laminates by using HTS-SQUID 

and giant magneto-resistive (GMR) sensors. Their aim was to correlate the performance and 

effectiveness of HTS-SQUID and GMR sensors to detect damage in fibre/metal laminate composite 

materials. According to the authors, the limitation of the typical eddy currents is related to the 

decreasing sensitivity of the search coil with the increasing lift-off and tilting of the probe. The 

choice of the two different sensors was to overcome the primary limitation of the eddy-current 

technique in damage detection. In their study, a Teflon and wet cotton were used to introduce defects 

and porosity respectively in the test specimens. The results show that the HTS-SQUID sensor has a 

higher sensitivity to the porosity inside the test specimen than the GMR sensor, due to its larger 

magnetic field. Additionally, the eddy current method using HTS-SQUID first order gradiometer 

and the GMR second order gradiometer were able to detect internal flaws in multilayers metallic 

alloys.  

 

Yin, Withers, Sharma, and Peyton (2009) designed three multifrequency eddy current sensors to 

measure the bulk conductivity, characterise directionality, detection of fault and imaging of 

unidirectional, cross-ply, and impact damaged CFRP specimens. The authors simulated the sensor 

responses with both analytical and finite element models. From the results achieved, ( Yin, Withers, 

Sharma, and Peyton, 2009) claimed that the characterisation of CFRP specimens with an instrument 

that is based on eddy current principles is feasible. 

 

Mizukami, Mizutani, Todoroki, and Suzuki (2015) presented the induction heating assisted eddy 

current testing (IHAET) for the detection of delamination in thermoplastic CFRPs’ welded areas. 

Delamination may develop in CFRPS during welding due to several reasons, for instance: expansion 

of entrapped air, an insufficient squeeze of air in the bond line due to insufficient pressure and 

thermal stresses ( Mizukami, Mizutani, Todoroki, and Suzuki, 2015). In order to detect delamination 

in the specimen, an induction heating was initiated to increase the temperature of the specimen. The 

damaged area was identified based on the gradients of temperature across the specimen. Since 

delamination increases the temperature of a composite laminate, the spots with higher temperature 

indicate the defective locations ( Mizukami, Mizutani, Todoroki, and Suzuki, 2015). The induction 

heating improved the effectiveness of the eddy-current testing for the detection of delamination in 

the laminate. According to the authors, the IHAET can detect delamination faster than ultrasonic 

testing because it does not require scanning time and a coupling medium. ( Mizukami, Mizutani, 

Todoroki, and Suzuki, 2015) used a statistical diagnosis method (Suzuki, Todoroki, Mizutani, and 

Matsuzaki, 2011) known as system identification-F test method (SI-F method) and IHAET sensors 

to detect a 2mm deep delamination with an area of 450 mm2 in a 4mm thick specimen. However, 

the method could not detect a delamination as large as 300 mm2. 

 



3.3.3 Electrical Resistance 

 

Among other features, carbon fibres have high electrical conductivity. With this property, carbon 

fibres are capable of conducting electricity in CFRPs. The presence of damage in the CFRPs may 

alter the electrical conductivity of the carbon fibres, due to, for example, the discontinuity of the 

fibres. Hence, the fibres in the CFRPs may act as embedded sensors ( Abry, Choi, Chateauminois, 

Dalloz, Giraud, and Salvia, 2001; Kupke, Schulte, and Schüler, 2001; Wen, Xia, and Choy, 2011) 

that can be used for SHM (De Baere, Van Paepegem, and Degrieck, 2010).  

 

In 1999, Abry, Bochard, Chateauminois, Salvia, and Giraud (1999) conducted a two-stage study on 

CFRPs: the inspection of the route of electrical conduction in an unloaded test specimen based on 

the change of electrode location, and the implementation of monotonic (tension and compression) 

and cyclic testing of CFRPs of different fibre fractions. The authors observed that the path of 

electrical conductivity across the CFRPs occurred in the longitudinal direction of the fibre and in 

the transverse direction of the plies. The presence of damage in the composite laminate reduced the 

level of electrical conductivity. The advantage of this method is that it can be used to detect very 

small damage in terms of fibre breakage. However, the accuracy of this method depends on how 

large the through-thickness resistivity of the fibres is. This implies that the volume of the fibres and 

location of electrodes will determine the level of sensitivity of this method to the presence of 

damage.  

 

Wang, Chung, and Chung (2005) monitored the impact damage on continuous carbon fibre epoxy-

matrix composite laminates by measuring the electrical resistance. Their work was aimed at 

verifying the possibility of detecting impact damage on carbon fibre epoxy-matrix composite 

laminates, examining the capability of the oblique and surface resistances for damage detection in 

the test composites, and the comparison between the effectiveness of ultrasonic and electrical 

resistance measurement techniques. From the results, it was noticed that the surface resistance is 

sensitive to fibre breakage and the oblique resistance is more sensitive to delamination of the fibre. 

This technique is claimed to be more sensitive to damage in carbon fibre composites than ultrasonic 

techniques are ( Wang, Chung, and Chung, 2005).  

 

Viets, Kaysser, and Schulte (2014) used electrical resistance measurements for the identification of 

BVIDs in GFRPs that are altered with nanoparticles. They studied the effect of diverse nanoparticles 

and filler contents. The determination of the local electrical resistance changes due to the presence 

of impact damage introduced on the specimen with an impact of 7.65J was aided with silver ink 

electrodes on the test specimen. It was stated that this technique is suitable for both on-site and off-

site SHM of FRP structures. 

 

Kwon, Wang, Choi, Shin, Devries, and Park (2016) examined the level of sensitivity of CNT paste 

to damage in composites using electrical resistance measurements. The dispersion of the CNT in 

the epoxy matrices was inspected using electrical resistance measurements and its load-sensing 

ability during tensile testing was observed by four point electrical resistance measurements. 

Artificial cracks were introduced into the test specimens and the cracks were filled with CNT paste 

( Kwon, Wang, Choi, Shin, Devries, and Park, 2016). The variation in the electrical resistance of 

the test specimen was used to detect cracks progression. 

 

 

 



3.3.4 Infrared Thermography 

 

Infrared thermography is highly suitable for the monitoring and detection of porosity in composite 

laminates. The pore morphology of composite materials is of great concern in the aerospace industry 

(Mayr, Plank, Sekelja, and Hendorfer, 2011) since the porosity of the material reduces the 

mechanical properties of the composite laminates. This could compromise the safety of the structure. 

Due to the increasing application of CFRPs in the manufacturing of critical parts of aeronautical 

structures, it is important to continuously monitor and detect any inherent fault in it promptly.  

 

The porosity in the composite normally occurs during the curing procedure due to loss of pressure 

in the autoclave ( Mayr, Plank, Sekelja, and Hendorfer, 2011). Therefore, effective quality control 

and inspection methods should be put in place during production to detect possible voids at the 

earliest stage. Mayr, Plank, Sekelja, and Hendorfer (2011) assessed the porosity in CFRPs using 

active thermography. In their work, X-ray computed tomography was used to determine the level of 

porosity and the microstructure of the pores. From the results obtained, it was observed that the 

shape and size of the pores in the composite affects the measured thermal diffusivity. In addition, 

the experimental result on active thermography correlates with the results obtained by an ultrasonic 

method with respect to the influence of the shapes of pores.  

 

Meola and Toscano (2014) explored the use of flash thermography to determine the quantity and 

distribution of pores in composite laminates. They presented relevant literature with respect to the 

use of flash thermography to assess the percentage of porosity in fibre reinforced composite 

materials. In their experiment, new data were obtained from some specimens, which has a different 

level of porosity, two different stacking sequences, and insertion of slags in the specimen in order 

to simulate local delamination. It was confirmed that the measure of thermal diffusivity using flash 

thermography as a porosity evaluation parameter, is a substitute to the ultrasonic attenuation 

estimation. The use of flash thermography requires no coupling media, surface finishing does not 

affect its use, it can detect defects and assess the level of porosity within one test (Meola and 

Toscano, 2014).   

 

Meola and Carlomagno (2010) used infrared thermography to study the effect of low-velocity 

impact on GFRPs. Their work has two objectives: the mapping of the temperature of the surface of 

the specimen when impacted and non-destructive evaluation (NDE) before and after impact on the 

specimen. An optical lock-in thermography was used to inspect the test specimen for possible 

manufacturing defects. The different energy level was impacted on the specimen and the material 

behaviour was monitored with an infrared camera. The results obtained indicates that during impact 

there were variations in temperature within a short time and only high-frequency imaging device 

was able to capture it. The initiation of damage can be determined from the temperature-time maps. 

In fact, the increase in temperature corresponds to the onset of the impact damage on the specimen.  

 

Defects in the bond due to delamination, the wrong installation of CFRP to concrete, and cracking 

can impact on the integrity of the composite CFRP system (Tashan and Al-mahaidi, 2012). Infrared 

thermography testing method has been reliable in detecting and monitoring of bond defects in 

composite materials (Tashan and Al-mahaidi, 2012). Tashan and Al-mahaidi (2012) used active 

pulse thermography and lock-in thermography to investigate bond defects between layers of CFRP 

laminates in concrete and CFRP fabric in steel. The active pulse thermography works based on 

exposing the surface of the test material short temperature stimulation and recording the temperature 

pattern of the heated test material as thermal images, while the lock-in thermography generates heat 

externally same way as the pulsing procedure but covers a broader range of different thermal 

frequencies (Tashan and Al-mahaidi, 2012). The results from their experiment indicate that the 



maximum thermal magnitude has a linear relationship with the input heat flux. In addition, the 

number of CFRP layers determines how accurate infrared thermography can detect the sizes and 

shapes of possible defects. The smaller the layers the more accurate the detection. The capability of 

this technique also depends on the heating method, positioning, and the inspection intervals.  

 

Montanini and Freni (2012) simulated subsurface defects in glass fibre reinforced plastic laminates 

used for the manufacturing of yachts. They used an optically excited lock-in thermography to 

quantitatively assess defects in it. The authors assessed the influence of the defect aspect ratio, 

detectability of defects simulating delamination, and the influence of damages over the gel-coat 

finish layer. The results show that lock-in infrared thermography is very efficient for the detection 

of defects in GFRP structures. However, some limitations were evident when used to inspect thick 

GFRP marine structures, due to inhomogeneity, high thermal transmittance, and a low emissivity of 

the gel-coated surface. This makes it difficult to measure the radiation and flaw sizing. In addition, 

Maier, Schmidt, Oswald-Tranta, and Schledjewski (2014) study the capacity of infrared 

thermography to detect low impact damages in composite plates. The aim of their work was to detect 

the impact damaged locations and provide information on its location for more damage analysis. 

They charged the test specimens with specified impact loads to simulate the effect of stone chips 

and analysed the specimens with thermography. From the results, it was shown that impact events 

were elastic for lower impact energies that are up to 3J. In addition, at impact energies up to 4J, it 

was possible to detect the damage by visual inspection. While impact energies up to 5J and beyond 

will result in catastrophic damage, making it very easy to detect visually. 

 

3.3.5 Nonlinear Elastic Wave Spectroscopy 

 

The nonlinear elastic wave characteristics are able to indicate early signs of degradation on a 

material (Van Den Abeele, Johnson and Sutin, 2000). Among other researchers,  Meo and 

Zumpano,(2005) studied the suitability of nonlinear elastic wave spectroscopy (NEWS) in the 

detection of impact damage in a sandwich panel. This technique detects damages from the presence 

of harmonics and sidebands on the spectrum of the acquired signal. These are generated by the high 

and low-frequency harmonic signal interaction (Zumpano and Meo, 2008a). In their study, they 

generated a high-frequency signal and a low-frequency signal with two distinct PZTs. Three 

acoustic sensors were used to collect the response signals for analysis. The experiment was 

conducted on damaged and undamaged specimens for comparison. From the analysis, the 

nonlinearity of the damaged specimen showed sidebands and harmonics of the excited frequencies. 

However, the NEWS technique cannot indicate the location of damage, but its presence alone.  

 

Zumpano and Meo (2008b) presented a transient nonlinear elastic wave spectroscopy (TNEWS) to 

detect and localise damage in a composite panel. The TNEWS measures the variations in the 

transient dynamic responses of a structure based on its nonlinear behaviour caused by damage. The 

TNEWS detects damage in a three-staged process: acquisition of the structural responses, detection 

of damage, and the localisation of damage (Zumpano and Meo, 2008b). The authors were able to 

detect and localise damage in the test specimen with this technique.  

 

3.4 Artificial Neural Networks 

Artificial neural networks (ANN) SHM based methods appeared as a result of the possible presence 

of multi-variant damages in a particular structure (Montalvao, Maia, and Ribeiro, 2006). ANN is an 

approach that is capable of learning when trained and this characteristic has made it useful in SHM 



and other engineering applications. The training procedure ends when the mean-square-error 

between the observed data and the ANN results for the entire element has reached a specified target 

or after the completion of a specified learning period (El Kadi and Al-Assaf, 2002b). It is an adaptive 

structure that changes its architecture or input information that passes through the network during 

the training phase (Sheela and Deepa, 2013). It processes input information, just as the brain does 

(Sahin, and Shenoi, 2003). With the correct inputs, ANN enables detecting faults and predicting the 

remaining useful life of materials and structures. ANN consists of layers of input nodes or neurons, 

one or more hidden neurons, and output layers of neurons. The hidden neurons are between the input 

and output neurons (El Kadi, 2006). The two classes of ANN are feed-forward network and feedback 

network (Sheela and Deepa, 2013). The advantages of the ANN technique are that it offers a 

processing speed and can process multiple inputs (Watkins, Akhavan, Dua, Chandrashekhara, and 

Wunsch, 2007). In fact, the ANN can also be used to segment radiographic images of damage in 

composite laminates for evaluation (De Albuquerque, Tavares, and Durao, 2010) 

El Kadi and Al-Assaf (2002a) used the strain energy as the input to a modular neural network 

(MNN) to determine the fatigue life of a composite material. They used the MNN model in order to 

reduce pattern interference that could result from various inputs, including maximum stress, stress 

ratio, and fibre orientation. Fatigue tests of 2 million cycles were conducted on unidirectional fibre 

reinforced composite laminates using a servo-hydraulic testing machine. A 10% reduction in the 

elastic modulus for the specimens with 0° orientation was defined as a failure (El Kadi and Al-

Assaf, 2002a). They compared the result from the MNN model, with strain energy as input, and the 

one from ANN, with stress ratio, maximum stress applied, and the orientation angle as inputs. The 

results indicated that strain energy can be used as a valid sole input parameter to the neural network 

in order to predict fatigue failure in unidirectional composite materials.  

Yam, Yan, and Jiang (2003) integrated vibration responses, wavelet transforms and ANN models. 

This was done through numerical simulations and experimental analysis. In their study, a 

piezoelectric patch actuator and sensors were used to excite and acquire the structural responses. 

The wavelet energy spectrum of the decomposed structural vibration responses was used to acquire 

the features of damage in the structure and an ANN was used to classify and detect damage. The 

results confirmed the suitability of ANN for detection, location, and classification of damage in 

composite structures. In addition, they were able to establish mapping relationships between the 

location and severity of damage and the damage feature of the structure.  

Sahin and Shenoi (2003) utilised global (changes in natural frequencies) and local (curvature mode 

shapes) vibration-based inputs for ANNs to identify and predict the criticality of damage in fibre-

reinforced plastic (FRPs) laminates. They obtained the dynamic characteristics of an undamaged 

and damaged cantilever composite beam for the first three natural modes using finite element 

analysis. In their work, the damage was initiated in six different locations along the length of the 

beam. To train the ANNs for the analysis, a different mix of input data from the first three natural 

modes of the beam was introduced (Sahin and Shenoi, 2003). They used a variety of stiffness 

reductions at the different locations along the composite beam to generate 126 damage scenarios. 

The results obtained indicated that there is a correlation between the chosen features that are used 

as input data and the correct identification of damage.  

Watkins, Akhavan, Dua, Chandrashekhara, and Wunsch (2007) used ANNs to outline damages 

caused by impacts on the composite plate. The type of damage and its severity were linked to the 

strain signals emitted from the impact on the composite plate. They observed that the impacts that 



caused damage had a higher peak strain and a more orderly strain profile than that of non-damaging 

impacts.  

Just-Agosto, Serrano, Shafiq, and Cecchini (2008) combined vibration and thermal signals to detect 

and characterise damage in a sandwich composite material using ANN. They studied the response 

to various damages in the structure using the transient temperature response (Shilbayeh, and 

Iskandarani, 2004) and mode shape curvature (Doebling, Farrar, Prime, and Shevitz, 1996) methods. 

A numerical analysis was conducted with finite element and finite volume methods. The data 

collected from the numerical simulations was used to train the neural network. The results they got 

indicated that the combination of vibration and thermal signatures with the neural network were 

effective in detecting damage, identifying the type, its location and severity ( Just-Agosto, Serrano, 

Shafiq, and Cecchini, 2008). 

A vibration-based method with ANN was recently used to establish the fibre volume fraction in 

GFRP ( Farhana, Majid, Paulraj, Ahmadhilmi, Fakhzan, and Gibson, 2016). The fibre volume 

fraction has a direct effect on the mechanical properties of a composite material. Therefore, this 

could be used for quality control purposes, for example. In this study, experimental protocols were 

developed in order to acquire the pattern of vibration. They also developed an autoregressive model 

to classify the fibre volume fractions and a pole-tracking algorithm to establish the positions of the 

autoregressive pole. It is from the common knowledge that the higher the fibre volume fraction, the 

higher the stiffness and the strength of a composite material. However, when the fibre volume 

fraction exceeds a certain amount, it may actually reduce the ultimate strength of the composite 

laminate ( Farhana, Majid, Paulraj, Ahmadhilmi, Fakhzan, and Gibson, 2016). The proposed method 

by Farhana, Majid, Paulraj, Ahmadhilmi, Fakhzan, and Gibson (2016) is only suitable for 

unidirectional GFRP.  

Jiang, Zhang, and Friedrich (2007) used the composition of the composite material and testing 

conditions as inputs and mechanical properties (compressive modulus, tensile strength, compressive 

strength, flexural strength, specific wear rate and frictional coefficient) as output parameters of the 

ANN. The result showed that the ANN was able to predict the output parameters based on the input 

parameters accurately, the reason why the proposed technique is offered as a possible approach for 

SHM. However, the effectiveness of the ANN depends largely on the robustness of the experimental 

database for the network training ( Jiang, Zhang, and Friedrich, 2007). The larger the database, the 

more accurate its damage predictability. Unfortunately, it is not always easy (or even possible) to 

get such a large set of data in real time.  

Finally, a comprehensive summary various damage identification technique and their applications 

are presented in Table 1. The information can be used as a quick reference to engineers and scientist 

involved in SHM.  

4 Prognosis 

 

The prognosis is the last level among the four steps of classification of damage detection methods 

presented by (Rytter, 1993). It is the prediction of the remaining life cycle of a system when a fault 

has been already present, which is of high importance to several industries. Prognosis saves 

resources, eliminates unplanned breakdown of facilities, and provides a window for maintenance 

activities or replacement of equipment. Hence, this area of damage detection has recently received 



considerable attention from researchers. Due to its feed forward, predictive and unique nature, it is 

a topic that deserves to be a science on its own. 

 

For example, Surace and Worden (2011) proposed an approach to damage prognosis that takes into 

consideration the consequences of uncertainties. It is based on integrating the damage progression 

laws within the framework of interval arithmetic. In interval arithmetic, each quantity is represented 

as an interval of possibilities ranging between upper and lower boundary values. They considered 

two case studies for the approach: the first case study considers an isotropic finite plate that is under 

harmonic uniaxial loading. A central mode I through-crack damage was introduced. They assumed 

the Paris-Erdogan law for the damage propagation model. The second case study considers internal 

delamination growth in composite plates that is under cyclic compression. In their work, the 

crack/delamination length was considered as the interval quantity and the remaining life of the crisp 

is defined in terms of the point when the upper boundary on the length exceeds a specified threshold. 

Then, the lower boundary becomes the safe-life of the structure. According to the authors, the 

number of cycles can also be considered as an interval quantity and the safe-life of the structure can 

be determined in terms of the lower boundary of the lifetime when the length of the crisp 

crack/delamination exceeds the specified point. 

 

Furthermore, Peng, Liu, Saxena, and Goebel (2015) proposed a prognosis framework for a real-time 

composite fatigue life. The methodology of the prognosis combines sensor measurements, Bayesian 

inference, and a mechanical stiffness degradation model for the prediction of real-time fatigue life. 

They used open-hole test specimen data sets to establish and validate the proposed method. The 

authors finally used a prognostic metric to evaluate the predictions of the proposed model. Among 

several conclusions drawn from their results, the remaining life of the test specimen is small when 

the stiffness is below 0.75 of the stiffness of the undamaged specimen. 

 

Finally, a summary of the techniques applied to damage detection in composite structures are stated 

in Tab. 4.1. The table provides an overview of the area of application of different techniques, their 

advantages and limitations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4.1: Summary of the Damage Techniques 
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implement; 

Cost-effective; 

High sensitivity 

to damage.  

Non-unique 

solutions; Errors in 

measurements; 

Environmental 

factors. 

Aerospace 
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Automobile 

industries; 

Inspection of 

civil 

infrastructure. 
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and IV 
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implement; 

Sensitive to 

local changes in 

structures; Uses 

only the output 

response; Does 

not need the 
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forces be white 

noise; Can be a 

swept sine, 

coloured noise, 

or impact.  

Difficult to apply 

without 

supervision. 
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engineering; 
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Ship mechanical 

noise); 
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Automobile 
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deviating; 
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application; 
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in thin material; 

High flexibility; 

Safe, and no 
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remote 

inspection. 
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for interpretation; 
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several types 

damages caused 

by fatigue 

loading; High 

sensitivity; 

Permanent 

installation of 

sensor for 

process control; 

Fast results and 

global 

monitoring 

using multiple 

sensors; Used 

for leak 

detection and 

location; 

Suitable for 

proof testing; In-

process weld 

monitoring; 

Online 

monitoring; Less 

intrusive; 

Remote 

scanning; Real-

time evaluation. 

Cannot 

characterise 

damage; Difficult 

to find damage; 

Requires load 

application to 

generate AE event; 

Requires skilled 

personnel to 

correlate data to 

the specific 

damage 

mechanism; 

Attenuation (the 

test specimen can 

attenuate the AE 

stress wave); A 

crack that is not 

propagating cannot 

be detected.  

Civil 

engineering; 

Automobile 

industries; NDT 

testing; 

Machining; 

Aerospace 

industries; 

Health 

monitoring in 

composite 

structures. 

Stage I, 

II, and 

IV 

Translaminar 

cracks; Fibre 

breakage; 

Delamination; 

Fibre matrix 

debonding; 

Matrix micro-

cracks  

U
lt

ra
so

n
ic

 I
n

sp
ec

ti
o

n
 

Easy to 

interpret; Can 

detect early 

stage of damage 

initiation; 

Enhanced 

sensitivity; 

Cheap, and 

readily 

available. 

Limited in depth 

because of 

attenuation; Low 

contrast due to 

high attenuation 

and scattering in 

composites; 

Variations in 

composite 

properties affects 

its performance. 

Aerospace 

industries; 

Material 

research; Quality 

assurance; 

Bridges; 

Monitoring of 

weld; Gas trailer 

tubes; Health 

monitoring in 

composite 

structures. 

Stage I, 

II and 

III 

Cracks; 

Delamination; 

Debonding. 



A
co

u
st

o
-U

lt
ra

so
n

ic
 

Assessment of 

non-critical 

damages; A 

good indicator 

of accumulated 

damage due to 

impact damage. 

Not useful for the 

detection of 

delamination or 

voids; Mandatory 

setup and pre-

calculations before 

testing; Surface 

roughness and 

texture affect its 

performance. 

Quality control 

and assessment 

of damage in 

composite 

materials; 

Automobile 

industries; 

Aeronautic 

industries; SHM 

in composite 

structures. 

Stage I, 

II, III, 

and IV 

Translaminar 

cracks; 

Debonding. 

V
ib

ro
-A

co
u

st
ic

 

Sensitive to 

nonlinearities; 

Sensitive to 

cracks; Changes 

in environmental 

and loading 

conditions have 

negligible effect.  

Selection of probe 

and excitation 

frequencies needs 

experienced 

personnel; The 

position of clamp 

with respect to the 

location of 

transducer affects 

the result. 

Aeronautic 

industries; 

Health 

monitoring in 

composite 

structures; Civil 

structures; Space 

industry. 

Stage I, 

II, III, 

and IV 

Fatigue 

cracks; 

Delamination; 

Debonding. 

In
st

ru
m

en
ta

ti
o

n
 

Can check the 

damage 

initiation and 

evolution; Cost-

effective; High 

precision and 

sensitivity; 

Requires little 

human effort 

and a limited 

number of 

sensors.  

Add excess weight 

to the structure; 

Affects the 

stiffness and 

strength of the 

material. 

Civil 

infrastructure; 

Manufacturing 

industries; 

Automobile 

industries; 

Aerospace 

industries; 

Petroleum 

industries; 

Pipelines 

inspection; 

Nuclear 

installations; 

Tunnels; SHM in 

composite 

structures. 

Stage I, 

II, III, 

and IV 

Cracks; 

Delamination; 

Debonding; 

Matrix 

fracture; 

Surface 

roughness. 

E
d

d
y

 C
u

rr
e
n

ts
 

Convenient to 

apply; No 

contact needed. 

Only effective in 

electro-conductive 

graphite fibre 

composites; The 

sensitivity of the 

search coil 

decreases as the 

lift-off and tilting 

of the probe 

increases. 

Health 

monitoring in 

composite 

structures. 

Stage I, 

II, III, 

and IV 

Cracks; 

Delamination; 

Porosity. 



E
le

ct
ri

ca
l 

R
es

is
ta

n
ce

 

M
ea

su
re

m
en

t 

Sensitive to 

small damages; 

Cost-effective; 

Suitable for both 

on-site and off-

site monitoring 

of FRP 

structures. 

Its sensitivity 

depends on the 

fibre volume and 

the location of the 

electrodes. 

Civil 

engineering; 

Health 

monitoring in 

composite 

structures. 

Stage I 

and II 

Fibre fracture; 

Fibre pullout; 

Delamination; 

Debonding; 

Cracks. 

In
fr

a
re

d
 T

h
er

m
o

g
ra

p
h

y
 

Enables remote 

sensing; Rapid 

coverage of 

large area; 

Relatively easy 

to use; Can 

figure out the 

exact location of 

damage; Offers 

a visual picture 

of health of a 

structure; Non-

contact. 

Generates varying 

thermal properties 

in different 

orientations due to 

anisotropy; 

Requires sensitive 

and expensive 

instrumentation; 

Difficult to detect 

damage that are 

not close to the 

surface of the 

structure. 

Research and 

development; 

Medicine; 

Predictive 

maintenance; 

Inspection of 

civil structures; 

Process 

optimisation; 

Observation and 

investigation; 

Quality control; 

Roof surveys; 

NDT testing; 

SHM in 

composite 

structures. 

State I 

and II 

Translaminar 

cracks in 

GFRP 

composites; 

Foreign 

inclusions; 

Impact 

damage; 

Voids and 

cracks in 

CFRP 

laminates; 

Delamination; 

Accumulation 

of water in 

composite 

sandwich 

panels; 

Debonding; 

Fatigue.  

N
o

n
li

n
ea

r 
E

la
st

ic
 W

a
v

e 
S

p
e
ct

ro
sc

o
p

y
 

Determination 

of the thickness 

of thin test 

specimen; 

Detection of 

damage 

initiation in both 

metals and 

composites; 

Detection of 

accumulated 

damage; 

Characterisation 

of structure 

related 

properties. 

Several effects 

such as 

dislocations, 

micro-cracks lead 

to various kinds of 

nonlinearity; 

Difficult to define 

reference samples 

for scattered 

damage; 

Amplitude 

determines the 

nonlinear effect. 

Health 

monitoring in 

composite 

structures; 

Aerospace 

structures. 

Stage I, 

II, III, 

and IV 

Porosity; 

Matrix 

properties; 

Delamination; 

Cracks; 

Debonding; 

Fracture; 

Thermal 

damage; 

Corrosion. 



A
rt

if
ic

ia
l 

N
eu

ra
l 

N
et

w
o

rk
s 

Can mimic a 

structure 

(adaptive 

learning); High 

processing speed 

and can process 

multiple inputs; 

Can be used to 

segment 

radiographic 

images of 

damage in 

composite 

laminates; Real-

time operation; 

Handle noisy 

data. 

Skilled personnel 

required; Large 

database needed 

for more accurate 

damage prediction 

– but it is difficult 

to get large data in 

real-time; 

Complex solutions 

consume a lot of 

time. 

Civil structures; 

Character 

recognition; 

Stock market 

prediction; 

Medicine; 

Security 

(features of 

fingerprints and 

fingerprint 

recognition 

system); 

Robotics; 

Environmental 

science, 

Chemical 

technology, 

science, and 

nanotechnology; 

SHM in 

composite 

structures. 

Stage I, 

II, III, 

and IV 

Fatigue; Fibre 

fracture 

 

5 Conclusion 

An updated review of the failure mechanisms in composite structures and non-destructive SHM 

testing techniques was presented. Despite the excellent mechanical properties of composite 

materials, they are susceptible to impact damage that can result in unexpected and catastrophic 

failures. Hence, early damage detection and localization in composite materials is of utmost 

importance in order to avert downtime and human risks.   

 

Although several methods for damage detection and localization have been developed, they all have 

their own advantages, limitations, and scope of application. Also, one challenge is related to damage 

size, which makes it difficult to detect until a certain minimum dimension is attained. However, the 

quantification of damage and the prediction of the structure’s lifetime (prognosis) still are the most 

complex areas. 

 

Most techniques are based on a comparison between undamaged and damaged states of the 

materials. A deviation from the data of the undamaged material indicates the presence of damage. 

Therefore, the health status of the undamaged material must first be established and used as a 

reference. 

 

Currently, the use of embedded sensors in composite materials is trending: composites are becoming 

smart materials. This technique enables the material to act as a self-sensor by detecting and 

localising damage in real time. However, the integrated sensors add weight to the structure and 

change its mechanical properties. Furthermore, these materials must be manufactured with the 

sensors beforehand. Therefore, for composite structures that do not have embedded sensors, other 



SHM frameworks must be chosen, depending on many several factors that were illustrated 

throughout this paper.  

 

Many of the techniques are based on changes in the structural dynamic response, which includes 

changes in the modal properties (natural frequencies, damping modal factors and mode shapes). For 

composite materials, damping appears to be a suitable candidate to be used as a damage sensitive 

feature. This is because there is a correlation between damping and the energy dissipated on the 

composite material during vibration. It is noteworthy to mention that the natural frequencies can 

also provide information about the presence of damage, as this is usually related to a reduction in 

stiffness, but it is the combination of different parameters what usually makes a more robust method. 

Finally, the assessment of nonlinearities, especially due to delamination, has also shown to be a 

promising technique to detect damage.  

 

Nevertheless, experimental uncertainties still are the greatest hindrance to most methods, reason 

why no method truly is false-negative or false-positive free. This can happen when factors such as 

an increase in temperature, changes in mass due to the installation of sensors and stiffness variations 

introduce more differences than damage itself. Uncertainty is the one primary limitation of structural 

damage detection and characterisation.  

 

Based on the many papers reviewed, researchers have been more focused on flat composite plates 

reinforced with synthetic fibres. There are relatively fewer works on more complex structural 

geometries, hybrid reinforced composites and natural fibre reinforced composites. It would be 

interesting to assess how the available techniques would perform with more complex designs. 
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