44 research outputs found

    Role of the BAHD1 Chromatin-Repressive Complex in Placental Development and Regulation of Steroid Metabolism.

    Get PDF
    BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases

    Retrospective French nationwide survey of childhood aggressive vascular anomalies of bone, 1988-2009

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>To document the epidemiological, clinical, histological and radiological characteristics of aggressive vascular abnormalities of bone in children.</p> <p>Study design</p> <p>Correspondents of the French Society of Childhood Malignancies were asked to notify all cases of aggressive vascular abnormalities of bone diagnosed between January 1988 and September 2009.</p> <p>Results</p> <p>21 cases were identified; 62% of the patients were boys. No familial cases were observed, and the disease appeared to be sporadic. Mean age at diagnosis was 8.0 years [0.8-16.9 years]. Median follow-up was 3 years [0.3-17 years]. The main presenting signs were bone fracture (n = 4) and respiratory distress (n = 7), but more indolent onset was observed in 8 cases. Lung involvement, with lymphangiectasies and pleural effusion, was the most frequent form of extraosseous involvement (10/21). Bisphosphonates, alpha interferon and radiotherapy were used as potentially curative treatments. High-dose radiotherapy appeared to be effective on pleural effusion but caused major late sequelae, whereas antiangiogenic drugs like alpha interferon and zoledrenate have had a limited impact on the course of pulmonary complications. The impact of bisphosphonates and alpha interferon on bone lesions was also difficult to assess, owing to insufficient follow-up in most cases, but it was occasionally positive. Six deaths were observed and the overall 10-year mortality rate was about 30%. The prognosis depended mainly on pulmonary and spinal complications.</p> <p>Conclusion</p> <p>Aggressive vascular abnormalities of bone are extremely rare in childhood but are lifethreatening. The impact of anti-angiogenic drugs on pulmonary complications seems to be limited, but they may improve bone lesions.</p

    Modelling acute and lasting effects of tDCS on epileptic activity

    No full text
    International audienceTranscranial Direct brain stimulation (tDCS) is commonly used in order to modulate cortical networks activity during physiological processes through the application of weak electrical fields with scalp electrodes. Cathodal stimulation has been shown to decrease brain excitability in the context of epilepsy, with variable success. However, the cellular mechanisms responsible for the acute and the long-lasting effect of tDCS remain elusive. Using a novel approach of computational modeling that combines detailed but functionally integrated neurons we built a physiologically-based thalamocortical column. This model comprises 10,000 individual neurons made of pyramidal cells, and 3 types of gamma-aminobutyric acid (GABA) -ergic cells (VIP, PV, and SST) respecting the anatomy, layers, projection, connectivity and neurites orientation. Simulating realistic electric fields in term of intensity, main results showed that 1) tDCS effects are best explained by modulation of the presynaptic probability of release 2) tDCS affects the dynamic of cortical network only if a sufficient number of neurons are modulated 3)VIP GABAergic interneurons of the superficial layer of the cortex are especially affected by tDCS 4) Long lasting effect depends on glutamatergic synaptic plasticity

    An Energy based approach of electromagnetism applied to adaptative meshing and error criteria

    No full text
    International audienceIn order to improve the finite-element modeling of macroscopic eddy currents (associated with motion and/or a time-varying electrical excitation), an original error criterion for adaptive meshing, based on a local power conservation, is proposed. Then, the importance of the order element in the error computation is investigated. Finally, the criterion is coupled to a “bubble” mesh generator, and an adaptive meshing of a 2-D induction heating case is performed

    Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites

    No full text
    International audienceMembrane contact sites are cellular structures that mediate interorganelle exchange and communication. The two major tether proteins of the endoplasmic reticulum (ER), VAP-A and VAP-B, interact with proteins from other organelles that possess a small VAP-interacting motif, named FFAT [two phenylalanines (FF) in an acidic track (AT)]. In this study, using an unbiased proteomic approach, we identify a novel ER tether named motile sperm domain-containing protein 2 (MOSPD2). We show that MOSPD2 possesses a Major Sperm Protein (MSP) domain which binds FFAT motifs and consequently allows membrane tethering in vitro MOSPD2 is an ER-anchored protein, and it interacts with several FFAT-containing tether proteins from endosomes, mitochondria, or Golgi. Consequently, MOSPD2 and these organelle-bound proteins mediate the formation of contact sites between the ER and endosomes, mitochondria, or Golgi. Thus, we characterized here MOSPD2, a novel tethering component related to VAP proteins, bridging the ER with a variety of distinct organelles
    corecore