7,316 research outputs found

    A Review of the Proposed KIsi Offset-Secant Method for Size-Insensitive Linear-Elastic Fracture Toughness Evaluation

    Get PDF
    Recently proposed modifications to ASTM E399 would provide a new size-insensitive approach to analyzing the force-displacement test record. The proposed size-insensitive linear-elastic fracture toughness, KIsi, targets a consistent 0.5mm crack extension for all specimen sizes by using an offset secant that is a function of the specimen ligament length. The KIsi evaluation also removes the Pmax/PQ criterion and increases the allowable specimen deformation. These latter two changes allow more plasticity at the crack tip, prompting the review undertaken in this work to ensure the validity of this new interpretation of the force-displacement curve. This paper provides a brief review of the proposed KIsi methodology and summarizes a finite element study into the effects of increased crack tip plasticity on the method given the allowance for additional specimen deformation. The study has two primary points of investigation: the effect of crack tip plasticity on compliance change in the force-displacement record and the continued validity of linear-elastic fracture mechanics to describe the crack front conditions. The analytical study illustrates that linear-elastic fracture mechanics assumptions remain valid at the increased deformation limit; however, the influence of plasticity on the compliance change in the test record is problematic. A proposed revision to the validity criteria for the KIsi test method is briefly discussed

    Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    Get PDF
    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format

    Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    Get PDF
    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization

    Applications of Automation Methods for Nonlinear Fracture Test Analysis

    Get PDF
    As fracture mechanics material testing evolves, the governing test standards continue to be refined to better reflect the latest understanding of the physics of the fracture processes involved. The traditional format of ASTM fracture testing standards, utilizing equations expressed directly in the text of the standard to assess the experimental result, is self-limiting in the complexity that can be reasonably captured. The use of automated analysis techniques to draw upon a rich, detailed solution database for assessing fracture mechanics tests provides a foundation for a new approach to testing standards that enables routine users to obtain highly reliable assessments of tests involving complex, non-linear fracture behavior. Herein, the case for automating the analysis of tests of surface cracks in tension in the elastic-plastic regime is utilized as an example of how such a database can be generated and implemented for use in the ASTM standards framework. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation

    PUMPCOM: um modelo para combinação de curvas e análise do desempenho de bombas.

    Get PDF
    Um modelo de computador foi desenvolvido para combinar curvas de bombas em serie e em paralelo e para determinar o desempenho da estacao de bombeamento e da bombas que a compõem. Polinomios sao ajustados aos dados das curvas da cada bomba e aos dados combinados da estacao de bombeamento. A interpolacao "spline" cubica e utilizada para combinar curvas de bomba de capacidade diferente. Indicadores de desempenho da estacao e de cada bomba, individualmente, sao calculados para toda a faixa de vazao de operacao do sistema. Uma interface grafica permite ao usuario desenhar o croqui da estacao de bombeamento e visualizar os dados de cada bomba e as equacoes ajustadas. Dados, graficos e coeficiente de equacoes ajustadas podem ser impressos. Os calculos do modelo foram verificados com planilha eletronica

    Comparison of 32-site exact diagonalization results and ARPES spectral functions for the AFM insulator Sr2CuO2Cl2Sr_2CuO_2Cl_2

    Full text link
    We explore the success of various versions of the one-band t-J model in explaining the full spectral functions found in angle-resolved photoemission spectra for the prototypical, quasi two-dimensional, tetragonal, antiferromagnetic insulator Sr2CuO2Cl2Sr_2CuO_2Cl_2. After presenting arguments justifying our extraction of A(k,ω)A(k,\omega) from the experimental data, we rely on exact-diagonalization results from studies of a square 32-site lattice, the largest cluster for which such information is presently available, to perform this comparison. Our work leads us to believe that (i) a one-band model that includes hopping out to third-nearest neighbours, as well three-site, spin-dependent hopping, can indeed explain not only the dispersion relation, but also the quasiparticle lifetimes -- only in the neighbourhood of k=(π/2,0)k = (\pi/2,0) do we find disagreement; (ii) an energy-dependent broadening function, Γ(E)=Γ0+AE\Gamma (E) = \Gamma_0 + A E, is important in accounting for the incoherent contributions to the spectral functions.Comment: 8 pages, Revtex

    "How do pilates trained physiotherapists utilize and value pilates exercise for MSK conditions? A qualitative study"

    Get PDF
    Background Pilates is a popular exercise therapy approach offering numerous benefits, including muscular strength, flexibility, control, and core stability. Pilates has been widely utilized in the prevention and rehabilitation of a variety of musculoskeletal disorders. Objectives The aim of this study was to explore the experiences and opinions of Pilates trained NHS and private practice physiotherapists in the UK, regarding the perceived benefits, risks, delivery and rationale for this exercise method. Methods This qualitative study used a self‐designed electronic survey to retrieve the views of 30 physiotherapists, who had undertaken formal Pilates Instruction training, recruited by a purposive and snowball sampling method. Questions were either multiple choice or open‐ended, examined via thematic analysis. Results Physiotherapists identified the most important benefits of Pilates as reduction in fear‐avoidance, improving bodily awareness and increasing muscular strength. Exercises that promote general movement were highlighted as being particularly useful, with a majority recommending daily practice for optimum benefit. Participants recognized lack of core strength as a key indicator, whereas others criticized excessive focus on this principle. Conclusions Physiotherapists identified a range of inter‐linked benefits and recognized that Pilates is hugely modifiable. Individualizing exercises can further encourage participation and negate the restriction of some health conditions. NHS and Private Practice Therapists utilize Pilates in a similar way, although rationales for its use may differ, as the justification for Pilates exercise may be evolving. Pilates appears a valuable methodology in the NHS, which can help patients engage with activity

    Resting metabolic rate and lung function in wild offshore common bottlenose dolphins, Tursiops truncatus, near Bermuda

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Frontiers in Physiology 9 (2018): 886, doi:10.3389/fphys.2018.00886.Diving mammals have evolved a suite of physiological adaptations to manage respiratory gases during extended breath-hold dives. To test the hypothesis that offshore bottlenose dolphins have evolved physiological adaptations to improve their ability for extended deep dives and as protection for lung barotrauma, we investigated the lung function and respiratory physiology of four wild common bottlenose dolphins (Tursiops truncatus) near the island of Bermuda. We measured blood hematocrit (Hct, %), resting metabolic rate (RMR, l O2 ⋅ min-1), tidal volume (VT, l), respiratory frequency (fR, breaths ⋅ min-1), respiratory flow (l ⋅ min-1), and dynamic lung compliance (CL, l ⋅ cmH2O-1) in air and in water, and compared measurements with published results from coastal, shallow-diving dolphins. We found that offshore dolphins had greater Hct (56 ± 2%) compared to shallow-diving bottlenose dolphins (range: 30–49%), thus resulting in a greater O2 storage capacity and longer aerobic diving duration. Contrary to our hypothesis, the specific CL (sCL, 0.30 ± 0.12 cmH2O-1) was not different between populations. Neither the mass-specific RMR (3.0 ± 1.7 ml O2 ⋅ min-1 ⋅ kg-1) nor VT (23.0 ± 3.7 ml ⋅ kg-1) were different from coastal ecotype bottlenose dolphins, both in the wild and under managed care, suggesting that deep-diving dolphins do not have metabolic or respiratory adaptations that differ from the shallow-diving ecotypes. The lack of respiratory adaptations for deep diving further support the recently developed hypothesis that gas management in cetaceans is not entirely passive but governed by alteration in the ventilation-perfusion matching, which allows for selective gas exchange to protect against diving related problems such as decompression sickness.Funding for this project was provided by the Office of Naval Research (ONR YIP Award No. N000141410563, and Dolphin Quest, Inc. FHJ was supported by the Office of Naval Research (Award No. N00014-1410410) and an AIAS-COFUND fellowship from Aarhus Institute of Advanced Studies under the FP7 program of the EU (Agreement No. 609033)
    corecore