1,361 research outputs found
On the formation of low-mass black holes in massive binary stars
Recently (Brown \& Bethe 1994) it was suggested that most stars with main
sequence mass in the range of about explode, returning
matter to the Galaxy, and then go into low-mass () black
holes. Even more massive main-sequence stars would, presumably, chiefly g o
into high-mass () black holes. The Brown-Bethe estimates
gave approximately low-mass black holes in the Galaxy. A
pressing question, which we attempt to answer here, is why, with the possible
exception of the compact objects in SN1987A and 4U\,1700--37, none of these
have been seen.
We address this question in three parts. Firstly, black holes are generally
``seen'' only in binaries, by the accretion of matter from a companion star.
High mass black holes are capable of accreting more matter than low-mass black
holes, so there is a selection effect favoring them. This, in itself, would not
be sufficient to show why low-mass black holes have not been seen, since
neutron stars (of nearly the same mass) are seen in abundance.
Secondly, and this is our main point, the primary star in a binary ---the
first star to evolve--- loses its hydrogen envelope by transfer of matter to
the secondary and loss into space, and the resulting ``naked'' helium star
evolves differently than a helium core, which is at least initially covered by
the hydrogen envelope in a massive main-sequence star. We show that primary
stars in binaries can end up as neutron stars even if their initial mass
substantially exceeds the mass limit for neutron star formation from single
stars (). An example is 4U\,1223--62, in which we suggest
that the initial primary mass exceeded , yet X-ray pulsationsComment: uuencoded compressed postscript. The preprint is also available at
http://www.ast.cam.ac.uk/preprint/PrePrint.htm
Electric dipole moments and disalignment of interstellar dust grains
The degree to which interstellar grains align with respect to the
interstellar magnetic field depends on disaligning as well as aligning
mechanisms. For decades, it was assumed that disalignment was due primarily to
the random angular impulses a grain receives when colliding with gas-phase
atoms. Recently, a new disalignment mechanism has been considered, which may be
very potent for a grain that has a time-varying electric dipole moment and
drifts across the magnetic field. We provide quantitative estimates of the
disalignment times for silicate grains with size > approximately 0.1 micron.
These appear to be shorter than the time-scale for alignment by radiative
torques, unless the grains contain superparamagnetic inclusions.Comment: 12 pages, 9 figures, submitted to MNRA
Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100)
Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100): first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s<sup>−1</sup> and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle) at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC) measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1) the error arising due to Mie scattering, and (2) the particle losses, especially for larger droplets depending on the set-up and wind conditions
Chemical and physical influences on aerosol activation in liquid clouds: a study based on observations from the Jungfraujoch, Switzerland
A simple statistical model to predict the number of aerosols which activate to form cloud droplets in warm clouds has been established, based on regression analysis of data from four summertime Cloud and Aerosol Characterisation Experiments (CLACE) at the high-altitude site Jungfraujoch (JFJ). It is shown that 79 % of the observed variance in droplet numbers can be represented by a model accounting only for the number of potential cloud condensation nuclei (defined as number of particles larger than 80 nm in diameter), while the mean errors in the model representation may be reduced by the addition of further explanatory variables, such as the mixing ratios of O3, CO, and the height of the measurements above cloud base. The statistical model has a similar ability to represent the observed droplet numbers in each of the individual years, as well as for the two predominant local wind directions at the JFJ (northwest and southeast). Given the central European location of the JFJ, with air masses in summer being representative of the free troposphere with regular boundary layer in-mixing via convection, we expect that this statistical model is generally applicable to warm clouds under conditions where droplet formation is aerosol limited (i.e. at relatively high updraught velocities and/or relatively low aerosol number concentrations). A comparison between the statistical model and an established microphysical parametrization shows good agreement between the two and supports the conclusion that cloud droplet formation at the JFJ is predominantly controlled by the number concentration of aerosol particles
13-month climatology of the aerosol hygroscopicity at the free tropospheric site Jungfraujoch (3580 m a.s.l.)
A hygroscopicity tandem differential mobility analyzer (HTDMA) was operated at the high-alpine site Jungfraujoch in order to characterize the hygroscopic diameter growth factors of the free tropospheric Aitken and accumulation mode aerosol. More than ~5000 h of valid data were collected for the dry diameters <i>D</i><sub>0</sub> = 35, 50, 75, 110, 165, and 265 nm during the 13-month measurement period from 1 May 2008 through 31 May 2009. No distinct seasonal variability of the hygroscopic properties was observed. Annual mean hygroscopic diameter growth factors (<i>D</i>/<i>D</i><sub>0</sub>) at 90% relative humidity were found to be 1.34, 1.43, and 1.46 for <i>D</i><sub>0</sub> = 50, 110, and 265 nm, respectively. This size dependence can largely be attributed to the Kelvin effect because corresponding values of the hygroscopicity parameter κ are nearly independent of size. The mean hygroscopicity of the Aitken and accumulation mode aerosol at the free tropospheric site Jungfraujoch was found to be &kappa;≈0.24 with little variability throughout the year. <br><br> The impact of Saharan dust events, a frequent phenomenon at the Jungfraujoch, on aerosol hygroscopicity was shown to be negligible for <i>D</i><sub>0</sub><265 nm. Thermally driven injections of planetary boundary layer (PBL) air, particularly observed in the early afternoon of summer days with convective anticyclonic weather conditions, lead to a decrease of aerosol hygroscopicity. However, the effect of PBL influence is not seen in the annual mean hygroscopicity data because the effect is small and those conditions (weather class, season and time of day) with PBL influence are relatively rare. <br><br> Aerosol hygroscopicity was found to be virtually independent of synoptic wind direction during advective weather situations, i.e. when horizontal motion of the atmosphere dominates over thermally driven convection. This indicates that the hygroscopic behavior of the aerosol observed at the Jungfraujoch can be considered representative of the lower free troposphere on at least a regional if not continental scale
Effects of relative humidity on aerosol light scattering in the Arctic
Aerosol particles experience hygroscopic growth in the ambient atmosphere. Their optical properties – especially the aerosol light scattering – are therefore strongly dependent on the ambient relative humidity (RH). In-situ light scattering measurements of long-term observations are usually performed under dry conditions (RH&gt;30–40%). The knowledge of this RH effect is of eminent importance for climate forcing calculations or for the comparison of remote sensing with in-situ measurements. This study combines measurements and model calculations to describe the RH effect on aerosol light scattering for the first time for aerosol particles present in summer and fall in the high Arctic. For this purpose, a field campaign was carried out from July to October 2008 at the Zeppelin station in Ny-Ålesund, Svalbard. The aerosol light scattering coefficient &sigma;<sub>sp</sub>(&lambda;) was measured at three distinct wavelengths (λ=450, 550, and 700 nm) at dry and at various, predefined RH conditions between 20% and 95% with a recently developed humidified nephelometer (WetNeph) and with a second nephelometer measuring at dry conditions with an average RH&lt;10% (DryNeph). In addition, the aerosol size distribution and the aerosol absorption coefficient were measured. The scattering enhancement factor <i>f</i>(RH, &lambda;) is the key parameter to describe the RH effect on &sigma;<sub>sp</sub>(&lambda;) and is defined as the RH dependent &sigma;<sub>sp</sub>(RH, &lambda;) divided by the corresponding dry &sigma;<sub>sp</sub>(RH<sub>dry</sub>, &lambda;). During our campaign the average <i>f</i>(RH=85%, λ=550 nm) was 3.24&plusmn;0.63 (mean &plusmn; standard deviation), and no clear wavelength dependence of <i>f</i>(RH, &lambda;) was observed. This means that the ambient scattering coefficients at RH=85% were on average about three times higher than the dry measured in-situ scattering coefficients. The RH dependency of the recorded <i>f</i>(RH, &lambda;) can be well described by an empirical one-parameter equation. We used a simplified method to retrieve an apparent hygroscopic growth factor <i>g</i>(RH), defined as the aerosol particle diameter at a certain RH divided by the dry diameter, using the WetNeph, the DryNeph, the aerosol size distribution measurements and Mie theory. With this approach we found, on average, <i>g</i>(RH=85%) values to be 1.61&plusmn;0.12 (mean&plusmn;standard deviation). No clear seasonal shift of <i>f</i>(RH, &lambda;) was observed during the 3-month period, while aerosol properties (size and chemical composition) clearly changed with time. While the beginning of the campaign was mainly characterized by smaller and less hygroscopic particles, the end was dominated by larger and more hygroscopic particles. This suggests that compensating effects of hygroscopicity and size determined the temporal stability of <i>f</i>(RH, &lambda;). During sea salt influenced periods, distinct deliquescence transitions were observed. At the end we present a method on how to transfer the dry in-situ measured aerosol scattering coefficients to ambient values for the aerosol measured during summer and fall at this location
Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and analysis of the events during the years 2001 and 2002
International audienceScattering and absorption coefficients have been measured continuously at several wavelengths since March 2001 at the high altitude site Jungfraujoch (3580 m a.s.l.). From these data, the wavelength dependences of the Ångström exponent and particularly of the single scattering albedo are determined. While the exponent of the single scattering albedo is usually positive, it becomes negative during Saharan dust events (SDE) due to the greater size of the mineral aerosols and to their different chemical composition. This change in the sign of the single scattering exponent turns out to be a simple means for detecting Saharan dust events. The occurrence of SDE detected by this new method was largely confirmed by visual inspection of filter colors and by studying long-range back-trajectories. An examination of SDE over a 22 months period shows that SDE are more frequent during the March?June period as well as during October and November. The trajectory analysis indicated a mean traveling time of 96.5 h with the most important source countries situated in the northern and north-western part of the Saharan desert. Most of the SDE do not lead to a detectable increase of the 48 h total suspended particulate matter (TSP) at the Jungfraujoch. During Saharan dust events, the average contribution of this dust to hourly TSP at the JFJ is 16 ?g/m3, which corresponds to an annual mean of 0.8 ?g/m3 or 24% of TSP
Perspectives on Interstellar Dust Inside and Outside of the Heliosphere
Measurements by dust detectors on interplanetary spacecraft appear to
indicate a substantial flux of interstellar particles with masses exceeding
10^{-12}gram. The reported abundance of these massive grains cannot be typical
of interstellar gas: it is incompatible with both interstellar elemental
abundances and the observed extinction properties of the interstellar dust
population. We discuss the likelihood that the Solar System is by chance
located near an unusual concentration of massive grains and conclude that this
is unlikely, unless dynamical processes in the ISM are responsible for such
concentrations. Radiation pressure might conceivably drive large grains into
"magnetic valleys". If the influx direction of interstellar gas and dust is
varying on a ~10 yr timescale, as suggested by some observations, this would
have dramatic implications for the small-scale structure of the interstellar
medium.Comment: 13 pages. To appear in Space Science Review
A deep optical/near-infrared catalog of Serpens
We present a deep optical/near-infrared imaging survey of the Serpens
molecular cloud. This survey constitutes the complementary optical data to the
Spitzer "Core To Disk" (c2d) Legacy survey in this cloud. The survey was
conducted using the Wide Field Camera at the Isaac Newton Telescope. About 0.96
square degrees were imaged in the R and Z filters, covering the entire region
where most of the young stellar objects identified by the c2d survey are
located. 26524 point-like sources were detected in both R and Z bands down to
R=24.5 mag and Z=23 mag with a signal-to-noise ratio better than 3. The 95%
completeness limit of our catalog corresponds to 0.04 solar masses for members
of the Serpens star forming region (age 2 Myr and distance 260 pc) in the
absence of extinction. Adopting the typical extinction of the observed area
(Av=7 mag), we estimate a 95% completeness level down to 0.1 solar masses. The
astrometric accuracy of our catalog is 0.4 arcsec with respect to the 2MASS
catalog. Our final catalog contains J2000 celestial coordinates, magnitudes in
the R and Z bands calibrated to the SDSS photometric system and, where
possible, JHK magnitudes from 2MASS for sources in 0.96 square degrees in the
direction of Serpens. This data product has been already used within the frame
of the c2d Spitzer Legacy Project analysis in Serpens to study the star/disk
formation and evolution in this cloud; here we use it to obtain new indications
of the disk-less population in Serpens.Comment: 7 page, 5 figure
- …
