41 research outputs found

    Continuous trench, pulsed laser ablation for micro-machining applications

    Get PDF
    The generation of controlled 3D micro-features by pulsed laser ablation in various materials requires an understanding of the material's temporal and energetic response to the laser beam. The key enabler of pulsed laser ablation for micro-machining is the prediction of the removal rate of the target material, thus allowing real-life machining to be simulated mathematically. Usually, the modelling of micro-machining by pulsed laser ablation is done using a pulse-by-pulse evaluation of the surface modification, which could lead to inaccuracies when pulses overlap. To address these issues, a novel continuous evaluation of the surface modification that use trenches as a basic feature is presented in this paper. The work investigates the accuracy of this innovative continuous modelling framework for micro-machining tasks on several materials. The model is calibrated using a very limited number of trenches produced for a range of powers and feed speeds; it is then able to predict the change in topography with a size comparable to the laser beam spot that arises from essentially arbitrary toolpaths. The validity of the model has been proven by being able to predict the surface obtained from single trenches with constant feed speed, single trenches with variable feed speed and overlapped trenches with constant feed speed for three different materials (graphite, polycrystalline diamond and a metal-matrix diamond CMX850) with low error. For the three materials tested, it is found that the average error in the model prediction for a single trench at constant feed speed is lower than 5 % and for overlapped trenches the error is always lower than 10 %. This innovative modelling framework opens avenues to: (i) generate in a repeatable and predictable manner any desired workpiece microtopography; (ii) understand the pulsed laser ablation machining process, in respect of the geometry of the trench produced, therefore improving the geometry of the resulting parts; (iii) enable numerical optimisation for the beam path, thus supporting the development of accurate and flexible computer assisted machining software for pulsed laser ablation micro-machining applications

    Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers

    Full text link
    [EN] The primary advantage of moderately superheated bubble chamber detectors is their simultaneous sensitivity to nuclear recoils from weakly interacting massive particle (WIMP) dark matter and insensitivity to electron recoil backgrounds. A comprehensive analysis of PICO gamma calibration data demonstrates for the first time that electron recoils in C3F8 scale in accordance with a new nucleation mechanism, rather than one driven by a hot spike as previously supposed. Using this semiempirical model, bubble chamber nucleation thresholds may be tuned to be sensitive to lower energy nuclear recoils while maintaining excellent electron recoil rejection. The PICO-40L detector will exploit this model to achieve thermodynamic thresholds as low as 2.8 keV while being dominated by single-scatter events from coherent elastic neutrino-nucleus scattering of solar neutrinos. In one year of operation, PICO-401, can improve existing leading limits from PICO on spin-dependent WIMP-proton coupling by nearly an order of magnitude for WIMP masses greater than 3 GeV c(-2) and will have the ability to surpass all existing non-xenon bounds on spin-independent WIMP-nucleon coupling for WIMP masses from 3 to 40 GeV c(-2).The PICO Collaboration wishes to thank SNOLAB and its staff for support through underground space, logistical and technical services. SNOLAB operations are supported by the Canada Foundation for Innovation and the Province of Ontario Ministry of Research and Innovation, with underground access provided by Vale at the Creighton mine site. We wish to acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Foundation for Innovation (CFI) for funding. We acknowledge the support from National Science Foundation (NSF) (Grants No. 0919526, No. 1506337, No. 1242637, No. 1205987, and No. 1806722). We acknowledge that this work is supported by the U.S. Department of Energy (DOE) Office of Science, Office of High Energy Physics (under Award No. DE-SC-0012161), by DGAPA-UNAM (PAPIIT No. IA100118) and Consejo Nacional de Ciencia y Tecnología (CONACyT, M¿exico, Grants No. 252167 and No. A1-S-8960), by the Department of Atomic Energy (DAE), Government of India, under the Centre for AstroParticle Physics II project (CAPP-II) at the Saha Institute of Nuclear Physics (SINP), European Regional Development Fund¿Project ¿Engineering Applications of Microworld Physics¿ (Project No. CZ.02.1.01/0.0/0.0/ 16_019/0000766), and the Spanish Ministerio de Ciencia, Innovación y Universidades (Red Consolider MultiDark, Grant No. FPA2017-90566-REDC). This work is partially supported by the Kavli Institute for Cosmological Physics at the University of Chicago through NSF Grant No. 1125897, and an endowment from the Kavli Foundation and its founder Fred Kavli. We also wish to acknowledge the support from Fermi National Accelerator Laboratory under Contract No. DE-AC02-07CH11359, and Pacific Northwest National Laboratory, which is operated by Battelle for the U.S. Department of Energy under Contract No. DE-AC05- 76RL01830. We also thank Compute Canada [75] and the Center for Advanced Computing, ACENET, Calcul Qu¿ebec, Compute Ontario, and WestGrid for computational support.Amole, C.; Ardid Ramírez, M.; Arnquist, I.; Asner, DM.; Baxter, D.; Behnke, E.; Bressler, M.... (2019). Data-driven modeling of electron recoil nucleation in PICO C3F8 bubble chambers. Physical Review D: covering particles, fields, gravitation, and cosmology. 100(8):1-18. https://doi.org/10.1103/PhysRevD.100.082006S1181008Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Chen, C. J. (2019). Dark matter search results from the complete exposure of the PICO-60 C3F8 bubble chamber. Physical Review D, 100(2). doi:10.1103/physrevd.100.022001Agnese, R., Anderson, A. J., Aramaki, T., Arnquist, I., Baker, W., Barker, D., … Bowles, M. A. (2017). Projected sensitivity of the SuperCDMS SNOLAB experiment. Physical Review D, 95(8). doi:10.1103/physrevd.95.082002Amaudruz, P.-A., Baldwin, M., Batygov, M., Beltran, B., Bina, C. E., Bishop, D., … Broerman, B. (2018). First Results from the DEAP-3600 Dark Matter Search with Argon at SNOLAB. Physical Review Letters, 121(7). doi:10.1103/physrevlett.121.071801Arnaud, Q., Asner, D., Bard, J.-P., Brossard, A., Cai, B., Chapellier, M., … Zampaolo, M. (2018). First results from the NEWS-G direct dark matter search experiment at the LSM. Astroparticle Physics, 97, 54-62. doi:10.1016/j.astropartphys.2017.10.009Aguilar-Arevalo, A., Amidei, D., Bertou, X., Butner, M., Cancelo, G., … Castañeda Vázquez, A. (2016). Search for low-mass WIMPs in a 0.6 kg day exposure of the DAMIC experiment at SNOLAB. Physical Review D, 94(8). doi:10.1103/physrevd.94.082006Aalseth, C. E., Acerbi, F., Agnes, P., Albuquerque, I. F. M., Alexander, T., Alici, A., … Ardito, R. (2018). DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS. The European Physical Journal Plus, 133(3). doi:10.1140/epjp/i2018-11973-4Jungman, G., Kamionkowski, M., & Griest, K. (1996). Supersymmetric dark matter. Physics Reports, 267(5-6), 195-373. doi:10.1016/0370-1573(95)00058-5Bertone, G., Hooper, D., & Silk, J. (2005). Particle dark matter: evidence, candidates and constraints. Physics Reports, 405(5-6), 279-390. doi:10.1016/j.physrep.2004.08.031Feng, J. L. (2010). Dark Matter Candidates from Particle Physics and Methods of Detection. Annual Review of Astronomy and Astrophysics, 48(1), 495-545. doi:10.1146/annurev-astro-082708-101659Duncan, F., Noble, A. J., & Sinclair, D. (2010). The Construction and Anticipated Science of SNOLAB. Annual Review of Nuclear and Particle Science, 60(1), 163-180. doi:10.1146/annurev.nucl.012809.104513Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2012). First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site. Physical Review D, 86(5). doi:10.1103/physrevd.86.052001Behnke, E., Behnke, J., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Conner, A. (2014). Erratum: First dark matter search results from a 4-kgCF3Ibubble chamber operated in a deep underground site [Phys. Rev. D86, 052001 (2012)]. Physical Review D, 90(7). doi:10.1103/physrevd.90.079902Aubin, F., Auger, M., Genest, M.-H., Giroux, G., Gornea, R., Faust, R., … Storey, C. (2008). Discrimination of nuclear recoils from alpha particles with superheated liquids. New Journal of Physics, 10(10), 103017. doi:10.1088/1367-2630/10/10/103017Zacek, V. (1994). Search for dark matter with moderately superheated liquids. Il Nuovo Cimento A, 107(2), 291-298. doi:10.1007/bf02781560Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2016). Dark matter search results from the PICO-60CF3Ibubble chamber. Physical Review D, 93(5). doi:10.1103/physrevd.93.052014Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Campion, P. (2017). Dark Matter Search Results from the PICO−60 C3F8 Bubble Chamber. Physical Review Letters, 118(25). doi:10.1103/physrevlett.118.251301Amole, C., Ardid, M., Arnquist, I. J., Asner, D. M., Baxter, D., Behnke, E., … Brice, S. J. (2016). Improved dark matter search results from PICO-2L Run 2. Physical Review D, 93(6). doi:10.1103/physrevd.93.061101Amole, C., Ardid, M., Asner, D. M., Baxter, D., Behnke, E., Bhattacharjee, P., … Broemmelsiek, D. (2015). Dark Matter Search Results from the PICO-2LC3F8Bubble Chamber. Physical Review Letters, 114(23). doi:10.1103/physrevlett.114.231302Hasert, F. J., Faissner, H., Krenz, W., Von Krogh, J., Lanske, D., Morfin, J., … Lemonne, J. (1973). Search for elastic muon-neutrino electron scattering. Physics Letters B, 46(1), 121-124. doi:10.1016/0370-2693(73)90494-2Hasert, F. J., Kabe, S., Krenz, W., Von Krogh, J., Lanske, D., Morfin, J., … Sacton, J. (1973). Observation of neutrino-like interactions without muon or electron in the gargamelle neutrino experiment. Physics Letters B, 46(1), 138-140. doi:10.1016/0370-2693(73)90499-1Behnke, E., Benjamin, T., Brice, S. J., Broemmelsiek, D., Collar, J. I., … Cooper, P. S. (2013). Direct measurement of the bubble-nucleation energy threshold in aCF3Ibubble chamber. Physical Review D, 88(2). doi:10.1103/physrevd.88.021101Tenner, A. G. (1963). Nucleation in bubble chambers. Nuclear Instruments and Methods, 22, 1-42. doi:10.1016/0029-554x(63)90224-6Kozynets, T., Fallows, S., & Krauss, C. B. (2019). Modeling emission of acoustic energy during bubble expansion in PICO bubble chambers. Physical Review D, 100(5). doi:10.1103/physrevd.100.052001Seitz, F. (1958). On the Theory of the Bubble Chamber. Physics of Fluids, 1(1), 2. doi:10.1063/1.1724333Behnke, E., Collar, J. I., Cooper, P. S., Crum, K., Crisler, M., Hu, M., … Tschirhart, R. (2008). Spin-Dependent WIMP Limits from a Bubble Chamber. Science, 319(5865), 933-936. doi:10.1126/science.1149999Barnabé-Heider, M., Di Marco, M., Doane, P., Genest, M.-H., Gornea, R., Guénette, R., … Noulty, R. (2005). Response of superheated droplet detectors of the PICASSO dark matter search experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 555(1-2), 184-204. doi:10.1016/j.nima.2005.09.015Ziegler, J. F., Ziegler, M. D., & Biersack, J. P. (2010). SRIM – The stopping and range of ions in matter (2010). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 268(11-12), 1818-1823. doi:10.1016/j.nimb.2010.02.091Bressler, M., Campion, P., Cushman, V. S., Morrese, A., Wagner, J. M., Zerbo, S., … Dahl, C. E. (2019). A buffer-free concept bubble chamber for PICO dark matter searches. Journal of Instrumentation, 14(08), P08019-P08019. doi:10.1088/1748-0221/14/08/p08019Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … Barrand, G. (2003). Geant4—a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. doi:10.1016/s0168-9002(03)01368-8Pozzi, S. A., Padovani, E., & Marseguerra, M. (2003). MCNP-PoliMi: a Monte-Carlo code for correlation measurements. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 513(3), 550-558. doi:10.1016/j.nima.2003.06.012Archambault, S., Aubin, F., Auger, M., Beleshi, M., Behnke, E., … Behnke, J. (2011). New insights into particle detection with superheated liquids. New Journal of Physics, 13(4), 043006. doi:10.1088/1367-2630/13/4/043006Glaser, D. A. (1954). Progress report on the development of bubble chambers. Il Nuovo Cimento, 11(S2), 361-368. doi:10.1007/bf02781098Fabian, B. N., Place, R. L., Riley, W. A., Sims, W. H., & Kenney, V. P. (1963). Density of Particle Tracks in the Hydrogen Bubble Chamber. Review of Scientific Instruments, 34(5), 484-495. doi:10.1063/1.1718415Willis, W. J., Fowler, E. C., & Rahm, D. C. (1957). Bubble Density in a Propane Bubble Chamber. Physical Review, 108(4), 1046-1047. doi:10.1103/physrev.108.1046Hahn, B., & Hugentobler, E. (1960). Relativistic increase in bubble density in a CBrF3 bubble chamber. Il Nuovo Cimento, 17(6), 983-985. doi:10.1007/bf02732145Brown, J. L., Glaser, D. A., & Perl, M. L. (1956). Liquid Xenon Bubble Chamber. Physical Review, 102(2), 586-587. doi:10.1103/physrev.102.586Baxter, D., Chen, C. J., Crisler, M., Cwiok, T., Dahl, C. E., Grimsted, A., … Zhang, J. (2017). First Demonstration of a Scintillating Xenon Bubble Chamber for Detecting Dark Matter and Coherent Elastic Neutrino-Nucleus Scattering. Physical Review Letters, 118(23). doi:10.1103/physrevlett.118.231301Durup, J., & Platzman, R. L. (1961). Role of the Auger effect in the displacement of atoms in solids by ionizing radiation. Discussions of the Faraday Society, 31, 156. doi:10.1039/df9613100156Schönfeld, E., & Janßen, H. (2000). Calculation of emission probabilities of X-rays and Auger electrons emitted in radioactive disintegration processes. Applied Radiation and Isotopes, 52(3), 595-600. doi:10.1016/s0969-8043(99)00216-xStrigari, L. E. (2009). Neutrino coherent scattering rates at direct dark matter detectors. New Journal of Physics, 11(10), 105011. doi:10.1088/1367-2630/11/10/105011Lewin, J. D., & Smith, P. F. (1996). Review of mathematics, numerical factors, and corrections for dark matter experiments based on elastic nuclear recoil. Astroparticle Physics, 6(1), 87-112. doi:10.1016/s0927-6505(96)00047-3Fitzpatrick, A. L., Haxton, W., Katz, E., Lubbers, N., & Xu, Y. (2013). The effective field theory of dark matter direct detection. Journal of Cosmology and Astroparticle Physics, 2013(02), 004-004. doi:10.1088/1475-7516/2013/02/004Anand, N., Fitzpatrick, A. L., & Haxton, W. C. (2014). Weakly interacting massive particle-nucleus elastic scattering response. Physical Review C, 89(6). doi:10.1103/physrevc.89.065501Gresham, M. I., & Zurek, K. M. (2014). Effect of nuclear response functions in dark matter direct detection. Physical Review D, 89(12). doi:10.1103/physrevd.89.123521Gluscevic, V., Gresham, M. I., McDermott, S. D., Peter, A. H. G., & Zurek, K. M. (2015). Identifying the theory of dark matter with direct detection. Journal of Cosmology and Astroparticle Physics, 2015(12), 057-057. doi:10.1088/1475-7516/2015/12/057Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Baudis, L. (2019). Constraining the Spin-Dependent WIMP-Nucleon Cross Sections with XENON1T. Physical Review Letters, 122(14). doi:10.1103/physrevlett.122.141301Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Limits on Spin-Dependent WIMP-Nucleon Cross Section Obtained from the Complete LUX Exposure. Physical Review Letters, 118(25). doi:10.1103/physrevlett.118.251302Fu, C., Cui, X., Zhou, X., Chen, X., Chen, Y., … Fang, D. (2017). Spin-Dependent Weakly-Interacting-Massive-Particle–Nucleon Cross Section Limits from First Data of PandaX-II Experiment. Physical Review Letters, 118(7). doi:10.1103/physrevlett.118.071301Behnke, E., Besnier, M., Bhattacharjee, P., Dai, X., Das, M., Davour, A., … Zacek, V. (2017). Final results of the PICASSO dark matter search experiment. Astroparticle Physics, 90, 85-92. doi:10.1016/j.astropartphys.2017.02.005Aartsen, M. G., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., … Ansseau, I. (2017). Search for annihilating dark matter in the Sun with 3 years of IceCube data. The European Physical Journal C, 77(3). doi:10.1140/epjc/s10052-017-4689-9Choi, K., Abe, K., Haga, Y., Hayato, Y., Iyogi, K., Kameda, J., … Nakahata, M. (2015). Search for Neutrinos from Annihilation of Captured Low-Mass Dark Matter Particles in the Sun by Super-Kamiokande. Physical Review Letters, 114(14). doi:10.1103/physrevlett.114.141301Ruppin, F., Billard, J., Figueroa-Feliciano, E., & Strigari, L. (2014). Complementarity of dark matter detectors in light of the neutrino background. Physical Review D, 90(8). doi:10.1103/physrevd.90.083510Felizardo, M., Girard, T. A., Morlat, T., Fernandes, A. C., Ramos, A. R., Marques, J. G., … Marques, R. (2014). The SIMPLE Phase II dark matter search. Physical Review D, 89(7). doi:10.1103/physrevd.89.072013Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). Limits on dark matter annihilation in the sun using the ANTARES neutrino telescope. Physics Letters B, 759, 69-74. doi:10.1016/j.physletb.2016.05.019Adrián-Martínez, S., Albert, A., André, M., Anton, G., Ardid, M., Aubert, J.-J., … Basa, S. (2016). A search for Secluded Dark Matter in the Sun with the ANTARES neutrino telescope. Journal of Cosmology and Astroparticle Physics, 2016(05), 016-016. doi:10.1088/1475-7516/2016/05/016Aprile, E., Aalbers, J., Agostini, F., Alfonsi, M., Althueser, L., Amaro, F. D., … Bauermeister, B. (2018). Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Physical Review Letters, 121(11). doi:10.1103/physrevlett.121.111302Akerib, D. S., Alsum, S., Araújo, H. M., Bai, X., Bailey, A. J., Balajthy, J., … Biesiadzinski, T. P. (2017). Results from a Search for Dark Matter in the Complete LUX Exposure. Physical Review Letters, 118(2). doi:10.1103/physrevlett.118.021303Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Araujo, G. R., Asner, D. M., … Batignani, G. (2018). Low-Mass Dark Matter Search with the DarkSide-50 Experiment. Physical Review Letters, 121(8). doi:10.1103/physrevlett.121.081307Agnes, P., Albuquerque, I. F. M., Alexander, T., Alton, A. K., Araujo, G. R., Ave, M., … Biery, K. (2018). DarkSide-50 532-day dark matter search with low-radioactivity argon. Physical Review D, 98(10). doi:10.1103/physrevd.98.102006Agnese, R., Anderson, A. J., Aralis, T., Aramaki, T., Arnquist, I. J., Baker, W., … Bauer, D. A. (2018). Low-mass dark matter search with CDMSlite. Physical Review D, 97(2). doi:10.1103/physrevd.97.022002Agnese, R., Aramaki, T., Arnquist, I. J., Baker, W., Balakishiyeva, D., Banik, S., … Binder, T. (2018). Results from the Super Cryogenic Dark Matter Search Experiment at Soudan. Physical Review Letters, 120(6). doi:10.1103/physrevlett.120.061802Hehn, L., Armengaud, E., Arnaud, Q., Augier, C., Benoît, A., Bergé, L., … Yakushev, E. (2016). Improved EDELWEISS-III sensitivity for low-mass WIMPs using a profile likelihood approach. The European Physical Journal C, 76(10). doi:10.1140/epjc/s10052-016-4388-yTolman, R. C. (1949). The Effect of Droplet Size on Surface Tension. The Journal of Chemical Physics, 17(3), 333-337. doi:10.1063/1.1747247Kirkwood, J. G., & Buff, F. P. (1949). The Statistical Mechanical Theory of Surface Tension. The Journal of Chemical Physics, 17(3), 338-343. doi:10.1063/1.1747248Xue, Y.-Q., Yang, X.-C., Cui, Z.-X., & Lai, W.-P. (2010). The Effect of Microdroplet Size on the Surface Tension and Tolman Length. The Journal of Physical Chemistry B, 115(1), 109-112. doi:10.1021/jp108431

    The best motley row in bacteriological assay

    No full text

    Asymptotic power of the two-sample test of Wilcoxon for logistic shift alternatives, and comparisin with simulati results

    No full text
    In this paper the power of the two-sample test of WILCOXON for Logistic shiftaltematives is computed by using two approximations. based on the asymptotic Normality of the test statistic. The sample sizes considered are m = n . 6, m = n = 10 and m = n = IS. These approximations are compared with the results of an experimental determination by Monte Carlo techniques
    corecore