79 research outputs found
In Situ Identification of Secondary Structures in Unpurified <i>Bombyx mori</i> Silk Fibrils Using Polarized Two-Dimensional Infrared Spectroscopy
[Image: see text] The mechanical properties of biomaterials are dictated by the interactions and conformations of their building blocks, typically proteins. Although the macroscopic behavior of biomaterials is widely studied, our understanding of the underlying molecular properties is generally limited. Among the noninvasive and label-free methods to investigate molecular structures, infrared spectroscopy is one of the most commonly used tools because the absorption bands of amide groups strongly depend on protein secondary structure. However, spectral congestion usually complicates the analysis of the amide spectrum. Here, we apply polarized two-dimensional (2D) infrared spectroscopy (IR) to directly identify the protein secondary structures in native silk films cast from Bombyx mori silk feedstock. Without any additional peak fitting, we find that the initial effect of hydration is an increase of the random coil content at the expense of the helical content, while the ÎČ-sheet content is unchanged and only increases at a later stage. This paper demonstrates that 2D-IR can be a valuable tool for characterizing biomaterials
The giant staphylococcal protein Embp facilitates colonization of surfaces through Velcro-like attachment to fibrillated fibronectin
Staphylococcus epidermidis causes some of the most hard-to-treat clinical infections by forming biofilms: Multicellular communities of bacteria encased in a protective matrix, supporting immune evasion and tolerance against antibiotics. Biofilms occur most commonly on medical implants, and a key event in implant colonization is the robust adherence to the surface, facilitated by interactions between bacterial surface proteins and host matrix components. S. epidermidis is equipped with a giant adhesive protein, extracellular matrix-binding protein (Embp), which facilitates bacterial interactions with surface-deposited, but not soluble fibronectin. The structural basis behind this selective binding process has remained obscure. Using a suite of single-cell and single-molecule analysis techniques, we show that S. epidermidis is capable of such distinction because Embp binds specifically to fibrillated fibronectin on surfaces, while ignoring globular fibronectin in solution. S. epidermidis adherence is critically dependent on multivalent interactions involving 50 fibronectin-binding repeats of Embp. This unusual, Velcro-like interaction proved critical for colonization of surfaces under high flow, making this newly identified attachment mechanism particularly relevant for colonization of intravascular devices, such as prosthetic heart valves or vascular grafts. Other biofilm-forming pathogens, such as Staphylococcus aureus, express homologs of Embp and likely deploy the same mechanism for surface colonization. Our results may open for a novel direction in efforts to combat devastating, biofilm-associated infections, as the development of implant materials that steer the conformation of adsorbed proteins is a much more manageable task than avoiding protein adsorption altogether
HighPâTNano-Mechanics of Polycrystalline Nickel
We have conducted highPâTsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volumeâpressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify âmicro/localâ yield due to high stress concentration at the grain-to-grain contacts and âmacro/bulkâ yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highPâTconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse HallâPetch relationship. We explain this abnormal HallâPetch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni
Detector Description and Performance for the First Coincidence Observations between LIGO and GEO
For 17 days in August and September 2002, the LIGO and GEO interferometer
gravitational wave detectors were operated in coincidence to produce their
first data for scientific analysis. Although the detectors were still far from
their design sensitivity levels, the data can be used to place better upper
limits on the flux of gravitational waves incident on the earth than previous
direct measurements. This paper describes the instruments and the data in some
detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial
change
Dense Stellar Populations: Initial Conditions
This chapter is based on four lectures given at the Cambridge N-body school
"Cambody". The material covered includes the IMF, the 6D structure of dense
clusters, residual gas expulsion and the initial binary population. It is aimed
at those needing to initialise stellar populations for a variety of purposes
(N-body experiments, stellar population synthesis).Comment: 85 pages. To appear in The Cambridge N-body Lectures, Sverre Aarseth,
Christopher Tout, Rosemary Mardling (eds), Lecture Notes in Physics Series,
Springer Verla
The long-term survival chances of young massive star clusters
We review the long-term survival chances of young massive star clusters
(YMCs), hallmarks of intense starburst episodes often associated with violent
galaxy interactions. We address the key question as to whether at least some of
these YMCs can be considered proto-globular clusters (GCs), in which case these
would be expected to evolve into counterparts of the ubiquitous old GCs
believed to be among the oldest galactic building blocks. In the absence of
significant external perturbations, the key factor determining a cluster's
long-term survival chances is the shape of its stellar initial mass function
(IMF). It is, however, not straightforward to assess the IMF shape in
unresolved extragalactic YMCs. We discuss in detail the promise of using
high-resolution spectroscopy to make progress towards this goal, as well as the
numerous pitfalls associated with this approach. We also discuss the latest
progress in worldwide efforts to better understand the evolution of entire
cluster systems, the disruption processes they are affected by, and whether we
can use recently gained insights to determine the nature of at least some of
the YMCs observed in extragalactic starbursts as proto-GCs. We conclude that
there is an increasing body of evidence that GC formation appears to be
continuing until today; their long-term evolution crucially depends on their
environmental conditions, however.Comment: invited refereed review article; ChJA&A, in press; 33 pages LaTeX (2
postscript figures); requires chjaa.cls style fil
- âŠ