226 research outputs found

    Final state hadronic interactions and non-resonant B±K±π+πB^\pm\to K^\pm\pi^+\pi^- decays

    Get PDF
    We evaluate the non-resonant decay amplitude of the process B±K±π+πB^\pm\to K^\pm\pi^+ \pi^- using an approach based on final state hadronic interactions described in terms of meson exchanges. We conclude that this mechanism generates inhomogeneities in the Dalitz plot of the B decay.Comment: 6 pages, 5 figures. Major changes. Version accepted for publication in Phys. Lett.

    Energy band structure and intrinsic coherent properties in two weakly linked Bose Einstein Condensates

    Full text link
    The energy band structure and energy splitting due to quantum tunneling in two weakly linked Bose-Einstein condensates were calculated by using the instanton method. The intrinsic coherent properties of Bose Josephson junction were investigated in terms of energy splitting. For EC/EJ1E_{C}/E_{J}\ll 1, the energy splitting is small and the system is globally phase coherent. In the opposite limit, EC/EJ1E_{C}/E_{J}\gg 1, the energy splitting is large and the system becomes a phase dissipation. Our reslults suggest that one should investigate the coherence phenomna of BJJ in proper condition such as EC/EJ1E_{C}/E_{J}\sim 1.Comment: to appear in Phys. Rev. A, 2 figure

    Charmed Exotics in Heavy Ion Collisions

    Get PDF
    Based on the color-spin interaction in diquarks, we argue that charmed multiquark hadrons are likely to exist. Because of the appreciable number of charm quarks produced in central nucleus-nucleus collisions at ultrarelativistic energies, production of charmed multiquark hadrons is expected to be enhanced in these collisions. Using both the quark coalescence model and the statistical hadronization model, we estimate the yield of charmed tetraquark meson TccT_{cc} and pentaquark baryon Θcs\Theta_{cs} in heavy ion collisions at RHIC and LHC. We further discuss the decay modes of these charmed exotic hadrons in order to facilitate their detections in experiments

    The transition form factors for semi-leptonic weak decays of J/ψJ/\psi in QCD sum rules

    Full text link
    Within the Standard Model, we investigate the semi-leptonic weak decays of J/ψJ/\psi. The various form factors of J/ψJ/\psi transiting to a single charmed meson (D(d,s)()D^{(*)}_{(d,s)}) are studied in the framework of the QCD sum rules. These form factors fully determine the rates of the weak semi-leptonic decays of J/ψJ/\psi and provide valuable information about the non-perturbative QCD effects. Our results indicate that the decay rate of the semi-leptonic weak decay mode J/ψDs()+e++νeJ/\psi \to D^{(*)-}_{s}+e^{+}+\nu_{e} is at order of 101010^{-10}.Comment: 28 pages, 6 figures, revised version to be published in Eur.Phys.J.

    Is X(3872) {\sl Really} a Molecular State?

    Full text link
    After taking into account both the pion and sigma meson exchange potential, we have performed a dynamical calculation of the D0Dˉ0D^0\bar{D}^{\ast0} system. The σ\sigma meson exchange potential is repulsive from heavy quark symmetry and numerically important for a loosely bound system. Our analysis disfavors the interpretation of X(3872) as a loosely bound molecular state if we use the experimental DDπD^\ast D\pi coupling constant g=0.59g=0.59 and a reasonable cutoff around 1 GeV, which is the typical hadronic scale. Bound state solutions with negative eigenvalues for the DDˉD\bar{D}^\ast system exist only with either a very large coupling constant (two times of the experimental value) or a large cutoff (Λ6\Lambda \sim 6 GeV or β6\beta \sim 6 GeV2^2). In contrast, there probably exists a loosely bound S-wave BBˉB\bar{B}^\ast molecular state. Once produced, such a molecular state would be rather stable since its dominant decay mode is the radiative decay through BBγB^\ast\to B \gamma. Experimental search of these states will be very interesting.Comment: 11 pages, 7 figures, 9 tables. The version to appear in EPJ

    The Physical Processes of CME/ICME Evolution

    Get PDF
    As observed in Thomson-scattered white light, coronal mass ejections (CMEs) are manifest as large-scale expulsions of plasma magnetically driven from the corona in the most energetic eruptions from the Sun. It remains a tantalizing mystery as to how these erupting magnetic fields evolve to form the complex structures we observe in the solar wind at Earth. Here, we strive to provide a fresh perspective on the post-eruption and interplanetary evolution of CMEs, focusing on the physical processes that define the many complex interactions of the ejected plasma with its surroundings as it departs the corona and propagates through the heliosphere. We summarize the ways CMEs and their interplanetary CMEs (ICMEs) are rotated, reconfigured, deformed, deflected, decelerated and disguised during their journey through the solar wind. This study then leads to consideration of how structures originating in coronal eruptions can be connected to their far removed interplanetary counterparts. Given that ICMEs are the drivers of most geomagnetic storms (and the sole driver of extreme storms), this work provides a guide to the processes that must be considered in making space weather forecasts from remote observations of the corona.Peer reviewe

    Meta-analysis of type 2 Diabetes in African Americans Consortium

    Get PDF
    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR)  = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    corecore