49 research outputs found

    Suture granuloma after orchiectomy: sonography, doppler and elastography features

    Full text link
    ABSTRACTSuture granuloma is a mass forming benign lesion that develops at the site of surgery as a foreign body reaction to non-absorbable suture material. We present a case of suture granuloma that developed at the inguinal region after orchiectomy, and define the sonography, color Doppler sonography and real-time ultrasound elastography findings in correlation with the histopathological findings

    Bone Marrow Transplantation Results in Human Donor Blood Cells Acquiring and Displaying Mouse Recipient Class I MHC and CD45 Antigens on Their Surface

    Get PDF
    Background: Mouse models of human disease are invaluable for determining the differentiation ability and functional capacity of stem cells. The best example is bone marrow transplants for studies of hematopoietic stem cells. For organ studies, the interpretation of the data can be difficult as transdifferentiation, cell fusion or surface antigen transfer (trogocytosis) can be misinterpreted as differentiation. These events have not been investigated in hematopoietic stem cell transplant models. Methodology/Principal Findings: In this study we investigated fusion and trogocytosis involving blood cells during bone marrow transplantation using a xenograft model. We report that using a standard SCID repopulating assay almost 100 % of the human donor cells appear as hybrid blood cells containing both mouse and human surface antigens. Conclusion/Significance: Hybrid cells are not the result of cell-cell fusion events but appear to be due to efficient surface antigen transfer, a process referred to as trogocytosis. Antigen transfer appears to be non-random and includes all donor cells regardless of sub-type. We also demonstrate that irradiation preconditioning enhances the frequency of hybrid cell

    Patient-derived xenograft (PDX) models in basic and translational breast cancer research

    Get PDF
    Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research

    Leishmania major Infection in Humanized Mice Induces Systemic Infection and Provokes a Nonprotective Human Immune Response

    Get PDF
    Background Leishmania (L.) species are the causative agent of leishmaniasis. Due to the lack of efficient vaccine candidates, drug therapies are the only option to deal with cutaneous leishmaniasis. Unfortunately, chemotherapeutic interventions show high toxicity in addition to an increased risk of dissemination of drug-resistant parasites. An appropriate laboratory animal based model is still missing which allows testing of new drug strategies in the context of human immune cells in vivo. Methodology/Principal Findings Humanized mice were infected subcutaneously with stationary phase promastigote L. major into the footpad. The human immune response against the pathogen and the parasite host interactions were analyzed. In addition we proved the versatility of this new model to conduct drug research studies by the inclusion of orally given Miltefosine. We show that inflammatory human macrophages get infected with Leishmania parasites at the site of infection. Furthermore, a Leishmania-specific human-derived T cell response is initiated. However, the human immune system is not able to prevent systemic infection. Thus, we treated the mice with Miltefosine to reduce the parasitic load. Notably, this chemotherapy resulted in a reduction of the parasite load in distinct organs. Comparable to some Miltefosine treated patients, humanized mice developed severe side effects, which are not detectable in the classical murine model of experimental leishmaniasis. Conclusions/Significance This study describes for the first time L. major infection in humanized mice, characterizes the disease development, the induction of human adaptive and innate immune response including cytokine production and the efficiency of Miltefosine treatment in these animals. In summary, humanized mice might be beneficial for future preclinical chemotherapeutic studies in systemic (visceral) leishmaniasis allowing the investigation of human immune response, side effects of the drug due to cytokine production of activated humane immune cells and the efficiency of the treatment to eliminate also not replicating (“hiding”) parasites

    HSV Type 2 Infection Increases HIV DNA Detection in Vaginal Tissue of Mice Expressing Human CD4 and CCR5

    No full text
    The goal of this study was to develop an in vivo murine model that can be used to study the influence of HSV-2 on HIV infection. Mice expressing transgenes for human CD4, CCR5, and Cyclin T1 were infected intravaginally with HSV-2 and 3–7 days later infected with HIV. HIV DNA was detected by real-time PCR. The frequency of detection of HIV DNA was significantly higher (65%) in vaginal tissue of HSV-2-infected mice compared to mock-infected mice (35%) when HIV was given 3 days after HSV-2. HSV-2-infected mice also had significantly higher levels of HIV DNA in vaginal tissue. HIV DNA was not detected in vaginal tissue of mice lacking human CD4. Longer periods (5 or 7 days) between infection with HSV-2 and HIV did not increase the frequency of detection or the amount of HIV DNA detected. HIV DNA was also detected in lymph nodes from some of the mice that were infected intravaginally with HSV-2 and HIV. Flow cytometric and mRNA analysis of human CD4 in vaginal tissue suggested that HSV-2 infection increased the number of T cells expressing human CD4 in vaginal tissue. This study provides evidence that HIV infection of cells occurs in the vagina of mice expressing human CD4, CCR5, and Cyclin T1 and that HSV-2 infection increases HIV infection. These findings demonstrate that this model can be used to study the mechanisms responsible for increased susceptibility to HIV in HSV-2-infected persons and for testing preventative treatments
    corecore