437 research outputs found

    Movement of the human foot in 100 pain free individuals aged 18–45 : implications for understanding normal foot function

    Get PDF
    Background: Understanding motion in the normal healthy foot is a prerequisite for understanding the effects of pathology and thereafter setting targets for interventions. Quality foot kinematic data from healthy feet will also assist the development of high quality and research based clinical models of foot biomechanics. To address gaps in the current literature we aimed to describe 3D foot kinematics using a 5 segment foot model in a population of 100 pain free individuals. Methods: Kinematics of the leg, calcaneus, midfoot, medial and lateral forefoot and hallux were measured in 100 self reported healthy and pain free individuals during walking. Descriptive statistics were used to characterise foot movements. Contributions from different foot segments to the total motion in each plane were also derived to explore functional roles of different parts of the foot. Results: Foot segments demonstrated greatest motion in the sagittal plane, but large ranges of movement in all planes. All foot segments demonstrated movement throughout gait, though least motion was observed between the midfoot and calcaneus. There was inconsistent evidence of movement coupling between joints. There were clear differences in motion data compared to foot segment models reported in the literature. Conclusions: The data reveal the foot is a multiarticular structure, movements are complex, show incomplete evidence of coupling, and vary person to person. The data provide a useful reference data set against which future experimental data can be compared and may provide the basis for conceptual models of foot function based on data rather than anecdotal observations

    Embodiment and body awareness in meditators

    Full text link
    [EN] Mindfulness practice consists of focusing attention in an intentional way on the experience of the present moment, including bodily sensations, thoughts or feelings, and the environment, with an attitude of acceptance and without judging. The body and, especially, body awareness are key elements in mindfulness. Embodiment or the feeling of being located within one's physical body is a related concept, and it is composed of the sense of ownership, location, and agency of the body. The rubber hand illusion (RHI) is an experimental paradigm that has been used to understand the mechanisms of embodiment, and evidence shows that body awareness modulates this illusion. To our knowledge, no studies have analyzed embodiment processes in meditators. The aim of this study is to use the RHI to analyze the mechanisms of embodiment and its relationship with body awareness and mindfulness in meditators and non-meditators. The sample was composed of long-term meditators (n = 15) and non-meditators (n = 15). Objective and self-report measures for embodiment with the RHI and self-report questionnaires of body awareness and mindfulness were administered. One-way ANOVA revealed significant differences between groups in sense of agency in the rubber hand. Meditators experienced less sense of agency in the rubber hand than non-meditators. Pearson's correlations showed that this lower sense of agency in the rubber hand was associated with higher body awareness and mindfulness. Results highlight the role of body awareness and mindfulness in embodiment mechanisms. This study has clinical implications, especially in psychopathological disorders that can be influenced by disturbances in these processes.The authors would like to acknowledge the "BODYTA" project (Spanish Ministry of Economy and Competitiveness, PSI2014-51928-R), "PROMOSAM" (Spanish Ministry of Economy and Competitiveness, PSI2014-56303-REDT), and "Excellence Research Program PROMETEO II" (Generalitat Valenciana, Conselleria de Educacion, Cultura y Deporte, PROMETEOII/2013/003). CIBERobn is an initiate of the ISCIII. PROMOSAM Excellence in Research Program (PSI2014-56303-REDT), MINECO, Spain.Cebolla, A.; Miragall, M.; Palomo, P.; Llorens Rodríguez, R.; Soler, J.; Demarzo, M.; García Campayo, J.... (2016). Embodiment and body awareness in meditators. Mindfulness. 7(6):1297-1305. https://doi.org/10.1007/s12671-016-0569-xS1297130576Aguado, J., Luciano, J. V., Cebolla, A., Serrano-Blanco, A., Soler, J., & García-Campayo, J. (2015). Bifactor analysis and construct validity of the five facet mindfulness questionnaire (FFMQ) in non-clinical Spanish samples. Frontiers in Psychology, 6, 404.Arzy, S., Thut, G., Mohr, C., Michel, C. M., & Blanke, O. (2006). Neural basis of embodiment: distinct contributions of temporoparietal junction and extrastriate body area. The Journal of Neuroscience, 26(31), 8074–8081.Baer, R. A., Smith, G. T., Hopkins, J., Krietemeyer, J., & Toney, L. (2006). Using self-report assessment methods to explore facets of mindfulness. Assessment, 13(1), 27–45.Bishop, S. R., Lau, M., Shapiro, S., Carlson, L., Anderson, N. D., Carmody, J., et al. (2004). Mindfulness: a proposed operational definition. Clinical Psychology: Science and Practice, 11(3), 230–241.Bornemann, B., Herbert, B. M., Mehling, W. E., & Singer, T. (2015). Differential changes in self-reported aspects of interoceptive awareness through 3 months of contemplative training. Frontiers in Psychology, 5, 1504.Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391(6669), 756–756.Calsius, J., Courtois, I., Stiers, J., & De Bie, J. (2015). How do fibromyalgia patients with alexithymia experience their body? A qualitative approach. SAGE Open, 5, 1–10.Cascio, C. J., Foss-Feig, J. H., Burnette, C. P., Heacock, J. L., & Cosby, A. A. (2012). The rubber hand illusion in children with autism spectrum disorders: delayed influence of combined tactile and visual input on proprioception. Autism, 16(4), 406–419.Cebolla, A., Garcia-Palacios, A., Soler, J., Guillen, V., Baños, R., & Botella, C. (2012). Psychometric properties of the Spanish validation of the Five Facets of Mindfulness Questionnaire (FFMQ). The European Journal of Psychiatry, 26(2), 118–126.Cebolla, A., Vara, M. D., Miragall, M., Palomo, P., & Baños, R. M. (2015). Embodied mindfulness: review of the body’s participation in the changes associated with the practice of mindfulness. Actas españolas de Psiquiatría, 43, 36–41.Cioffi, D. (1991). Sensory awareness versus sensory impression: affect and attention interact to produce somatic meaning. Cognition & Emotion, 5(4), 275–294.Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates Inc.Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59–70.Dreeben, S. J., Mamberg, M. H., & Salmon, P. (2013). The MBSR body scan in clinical practice. Mindfulness, 4(4), 394–401.Dummer, T., Picot-Annand, A., Neal, T., & Moore, C. (2009). Movement and the rubber hand illusion. Perception, 38(2), 271.Dunn, B. D., Galton, H. C., Morgan, R., Evans, D., Oliver, C., Meyer, M., et al. (2010). Listening to your heart. How interoception shapes emotion experience and intuitive decision making. Psychological Science, 21(12), 1835–1844.Ehrsson, H. H., Spence, C., & Passingham, R. E. (2004). That’s my hand! Activity in premotor cortex reflects feeling of ownership of a limb. Science, 305(5685), 875–877.Eshkevari, E., Rieger, E., Longo, M. R., Haggard, P., & Treasure, J. (2012). Increased plasticity of the bodily self in eating disorders. Psychological Medicine, 42(04), 819–828.Farb, N., Daubenmier, J. J., Price, C. J., Gard, T., Kerr, C., Dunn, B., et al. (2015). Interoception, contemplative practice, and health. Frontiers in Psychology, 6, 763.Fox, K. C., Zakarauskas, P., Dixon, M., Ellamil, M., Thompson, E., Christoff, K., et al. (2012). Meditation experience predicts introspective accuracy. PLoS ONE, 7(9), e45370.Grossman, P., Tiefenthaler-Gilmer, U., Raysz, A., & Kesper, U. (2007). Mindfulness training as an intervention for fibromyalgia: evidence of postintervention and 3-year follow-up benefits in well-being. Psychotherapy and Psychosomatics, 76(4), 226–233.Holmes, N. P., Snijders, H. J., & Spence, C. (2006). Reaching with alien limbs: visual exposure to prosthetic hands in a mirror biases proprioception without accompanying illusions of ownership. Perception & Psychophysics, 68(4), 685–701.Hölzel, B. K., Ott, U., Gard, T., Hempel, H., Weygandt, M., Morgen, K., et al. (2008). Investigation of mindfulness meditation practitioners with voxel-based morphometry. Social Cognitive and Affective Neuroscience, 3(1), 55–61.Hölzel, B. K., Lazar, S. W., Gard, T., Schuman-Olivier, Z., Vago, D. R., & Ott, U. (2011). How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspectives on Psychological Science, 6(6), 537–559.Kalckert, A., & Ehrsson, H. H. (2012). Moving a rubber hand that feels like your own: a dissociation of ownership and agency. Frontiers in Human Neuroscience, 6, 40.Karnath, H. O., & Baier, B. (2010). Right insula for our sense of limb ownership and self-awareness of actions. Brain Structure and Function, 214(5-6), 411–417.Keizer, A., Smeets, M. A., Postma, A., van Elburg, A., & Dijkerman, H. C. (2014). Does the experience of ownership over a rubber hand change body size perception in anorexia nervosa patients? Neuropsychologia, 62, 26–37.Kerr, C. E., Sacchet, M. D., Lazar, S. W., Moore, C. I., & Jones, S. R. (2013). Mindfulness starts with the body: somatosensory attention and top-down modulation of cortical alpha rhythms in mindfulness meditation. Frontiers in Human Neuroscience, 7, 12.Lakhan, S. E., & Schofield, K. L. (2013). Mindfulness-based therapies in the treatment of somatization disorders: a systematic review and meta-analysis. PLoS ONE, 8(8), e71834.Lazar, S. W., Kerr, C. E., Wasserman, R. H., Gray, J. R., Greve, D. N., Treadway, M. T., et al. (2005). Meditation experience is associated with increased cortical thickness. Neuroreport, 16(17), 1893–1897.Longo, M. R., Schüür, F., Kammers, M. P., Tsakiris, M., & Haggard, P. (2008). What is embodiment? A psychometric approach. Cognition, 107(3), 978–998.McManus, F., Surawy, C., Muse, K., Vazquez-Montes, M., & Williams, J. M. G. (2012). A randomized clinical trial of mindfulness-based cognitive therapy versus unrestricted services for health anxiety (hypochondriasis). Journal of Consulting and Clinical Psychology, 80(5), 817–828.Mehling, W. E., Gopisetty, V., Daubenmier, J., Price, C. J., Hecht, F. M., & Stewart, A. (2009). Body awareness: construct and self-report measures. PLoS ONE, 4(5), e5614.Mehling, W. E., Price, C., Daubenmier, J. J., Acree, M., Bartmess, E., & Stewart, A. (2012). The multidimensional assessment of interoceptive awareness (MAIA). PLoS ONE, 7(11), e48230.Mirams, L., Poliakoff, E., Brown, R. J., & Lloyd, D. M. (2013). Brief body-scan meditation practice improves somatosensory perceptual decision making. Consciousness and Cognition, 22(1), 348–359.Moseley, G. L., Olthof, N., Venema, A., Don, S., Wijers, M., Gallace, A., et al. (2008). Psychologically induced cooling of a specific body part caused by the illusory ownership of an artificial counterpart. Proceedings of the National Academy of Sciences, 105(35), 13169–13173.Mussap, A. J., & Salton, N. (2006). A ‘rubber-hand’ illusion reveals a relationship between perceptual body image and unhealthy body change. Journal of Health Psychology, 11(4), 627–639.Naranjo, J. R., & Schmidt, S. (2012). Is it me or not me? Modulation of perceptual-motor awareness and visuomotor performance by mindfulness meditation. BMC Neuroscience, 13(1), 88.Parkin, L., Morgan, R., Rosselli, A., Howard, M., Sheppard, A., Evans, D., et al. (2014). Exploring the relationship between mindfulness and cardiac perception. Mindfulness, 5(3), 298–313.Pollatos, O., Kurz, A. L., Albrecht, J., Schreder, T., Kleemann, A. M., Schöpf, V., et al. (2008). Reduced perception of bodily signals in anorexia nervosa. Eating Behaviors, 9(4), 381–388.Quezada-Berumen, L., González-Ramírez, M. T., Cebolla, A., Soler, J., & García-Campayo, J. (2014). Conciencia corporal y mindfulness: Validación de la versión española de la escala de conexión corporal (SBC). Actas Españolas de Psiquiatría, 42(2), 57–67.Rohde, M., Di Luca, M., & Ernst, M. O. (2011). The rubber hand illusion: feeling of ownership and proprioceptive drift do not go hand in hand. PLoS One, 6(6), e21659.Schauder, K. B., Mash, L. E., Bryant, L. K., & Cascio, C. J. (2015). Interoceptive ability and body awareness in autism spectrum disorder. Journal of Experimental Child Psychology, 131, 193–200.Sze, J. A., Gyurak, A., Yuan, J. W., & Levenson, R. W. (2010). Coherence between emotional experience and physiology: does body awareness training have an impact? Emotion, 10(6), 803–814.Teper, R., & Inzlicht, M. (2013). Meditation, mindfulness and executive control: the importance of emotional acceptance and brain-based performance monitoring. Social Cognitive and Affective Neuroscience, 8(1), 85–92.Thakkar, K. N., Nichols, H. S., McIntosh, L. G., & Park, S. (2011). Disturbances in body ownership in schizophrenia: evidence from the rubber hand illusion and case study of a spontaneous out-of-body experience. PLoS One, 6(10), e27089.Tran, U. S., Glück, T. M., & Nader, I. W. (2013). Investigating the Five Facet Mindfulness Questionnaire (FFMQ): construction of a short form and evidence of a two‐factor higher order structure of mindfulness. Journal of Clinical Psychology, 69(9), 951–965.Tsakiris, M., & Haggard, P. (2005). The rubber hand illusion revisited: visuotactile integration and self-attribution. Journal of Experimental Psychology: Human Perception and Performance, 31(1), 80.Tsakiris, M., Tajadura-Jiménez, A., & Costantini, M. (2011). Just a heartbeat away from one’s body: interoceptive sensitivity predicts malleability of body-representations. Proceedings of the Royal Society of London B: Biological Sciences, 278(1717), 2470–2476.Van Ravesteijn, H., Lucassen, P. L. B. J., Bor, H., Van Weel, C., & Speckens, A. (2013). Mindfulness-based cognitive therapy for patients with medically unexplained symptoms: a randomized controlled trial. Psychotherapy and Psychosomatics, 82(5), 299–310

    Challenging fear: Chemical alarm signals are not causing morphology changes in crucian carp (Carassius carassius)

    Get PDF
    Crucian carp develops a deep body in the presence of chemical cues from predators, which makes the fish less vulnerable to gape-limited predators. The active components originate in conspecifics eaten by predators, and are found in the filtrate of homogenised conspecific skin. Chemical alarm signals, causing fright reactions, have been the suspected inducers of such morphological changes. We improved the extraction procedure of alarm signals by collecting the supernatant after centrifugation of skin homogenates. This removes the minute particles that normally make a filtered sample get turbid. Supernatants were subsequently diluted and frozen into ice-cubes. Presence of alarm signals was confirmed by presenting thawed ice-cubes to crucian carp in behaviour tests at start of laboratory growth experiments. Frozen extracts were added further on three times a week. Altogether, we tested potential body-depth-promoting properties of alarm signals twice in the laboratory and once in the field. Each experiment lasted for a minimum of 50 days. Despite growth of crucian carp in all experiments, no morphology changes were obtained. Accordingly, we conclude that the classical alarm signals that are releasing instant fright reactions are not inducing morphological changes in this species. The chemical signals inducing a body-depth increase are suspected to be present in the particles removed during centrifugation (i.e., in the precipitate). Tissue particles may be metabolized by bacteria in the intestine of predators, resulting in water-soluble cues. Such latent chemical signals have been found in other aquatic organisms, but hitherto not reported in fishe

    ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin immunoprecipitation (ChIP) followed by microarray hybridization (ChIP-chip) or high-throughput sequencing (ChIP-seq) allows genome-wide discovery of protein-DNA interactions such as transcription factor bindings and histone modifications. Previous reports only compared a small number of profiles, and little has been done to compare histone modification profiles generated by the two technologies or to assess the impact of input DNA libraries in ChIP-seq analysis. Here, we performed a systematic analysis of a modENCODE dataset consisting of 31 pairs of ChIP-chip/ChIP-seq profiles of the coactivator CBP, RNA polymerase II (RNA PolII), and six histone modifications across four developmental stages of <it>Drosophila melanogaster</it>.</p> <p>Results</p> <p>Both technologies produce highly reproducible profiles within each platform, ChIP-seq generally produces profiles with a better signal-to-noise ratio, and allows detection of more peaks and narrower peaks. The set of peaks identified by the two technologies can be significantly different, but the extent to which they differ varies depending on the factor and the analysis algorithm. Importantly, we found that there is a significant variation among multiple sequencing profiles of input DNA libraries and that this variation most likely arises from both differences in experimental condition and sequencing depth. We further show that using an inappropriate input DNA profile can impact the average signal profiles around genomic features and peak calling results, highlighting the importance of having high quality input DNA data for normalization in ChIP-seq analysis.</p> <p>Conclusions</p> <p>Our findings highlight the biases present in each of the platforms, show the variability that can arise from both technology and analysis methods, and emphasize the importance of obtaining high quality and deeply sequenced input DNA libraries for ChIP-seq analysis.</p

    Contribution of discourse and morphosyntax skills to reading comprehension in Chinese dyslexic and typically developing children

    Get PDF
    This study aimed at identifying important skills for reading comprehension in Chinese dyslexic children and their typically developing counterparts matched on age (CA controls) or reading level (RL controls). The children were assessed on Chinese reading comprehension, cognitive, and reading-related skills. Results showed that the dyslexic children performed significantly less well than the CA controls but similarly to RL controls in most measures. Results of multiple regression analyses showed that word-level reading-related skills like oral vocabulary and word semantics were found to be strong predictors of reading comprehension among typically developing junior graders and dyslexic readers of senior grades, whereas morphosyntax, a text-level skill, was most predictive for typically developing senior graders. It was concluded that discourse and morphosyntax skills are particularly important for reading comprehension in the non-inflectional and topic-prominent Chinese system

    The Meiotic Recombination Checkpoint Suppresses NHK-1 Kinase to Prevent Reorganisation of the Oocyte Nucleus in Drosophila

    Get PDF
    The meiotic recombination checkpoint is a signalling pathway that blocks meiotic progression when the repair of DNA breaks formed during recombination is delayed. In comparison to the signalling pathway itself, however, the molecular targets of the checkpoint that control meiotic progression are not well understood in metazoans. In Drosophila, activation of the meiotic checkpoint is known to prevent formation of the karyosome, a meiosis-specific organisation of chromosomes, but the molecular pathway by which this occurs remains to be identified. Here we show that the conserved kinase NHK-1 (Drosophila Vrk-1) is a crucial meiotic regulator controlled by the meiotic checkpoint. An nhk-1 mutation, whilst resulting in karyosome defects, does so independent of meiotic checkpoint activation. Rather, we find unrepaired DNA breaks formed during recombination suppress NHK-1 activity (inferred from the phosphorylation level of one of its substrates) through the meiotic checkpoint. Additionally DNA breaks induced by X-rays in cultured cells also suppress NHK-1 kinase activity. Unrepaired DNA breaks in oocytes also delay other NHK-1 dependent nuclear events, such as synaptonemal complex disassembly and condensin loading onto chromosomes. Therefore we propose that NHK-1 is a crucial regulator of meiosis and that the meiotic checkpoint suppresses NHK-1 activity to prevent oocyte nuclear reorganisation until DNA breaks are repaired

    Reading Comprehension and Reading Comprehension Difficulties

    Get PDF

    Busulphan is active against neuroblastoma and medulloblastoma xenografts in athymic mice at clinically achievable plasma drug concentrations

    Get PDF
    High-dose busulphan-containing chemotherapy regimens have shown high response rates in children with relapsed or refractory neuroblastoma, Ewing's sarcoma and medulloblastoma. However, the anti-tumour activity of busulfan as a single agent remains to be defined, and this was evaluated in athymic mice bearing advanced stage subcutaneous paediatric solid tumour xenografts. Because busulphan is highly insoluble in water, the use of several vehicles for enteral and parenteral administration was first investigated in terms of pharmacokinetics and toxicity. The highest bioavailability was obtained with busulphan in DMSO administered i.p. When busulphan was suspended in carboxymethylcellulose and given orally or i.p., the bioavailability was poor. Then, in the therapeutic experiments, busulphan in DMSO was administered i.p. on days 0 and 4. At the maximum tolerated total dose (50 mg kg−1), busulphan induced a significant tumour growth delay, ranging from 12 to 34 days in the three neuroblastomas evaluated and in one out of three medulloblastomas. At a dose level above the maximum tolerated dose, busulphan induced complete and partial tumour regressions. Busulphan was inactive in a peripheral primitive neuroectodermal tumour (PNET) xenograft. When busulphan pharmacokinetics in mice and humans were considered, the estimated systemic exposure at the therapeutically active dose in mice (113 μg h ml−1) was close to the mean total systemic exposure in children receiving high-dose busulphan (102.4 μg h ml−1). In conclusion, busulphan displayed a significant anti-tumour activity in neuroblastoma and medulloblastoma xenografts at plasma drug concentrations which can be achieved clinically in children receiving high-dose busulphan-containing regimens. 1999 Cancer Research Campaig

    Flip-Flop of Phospholipids in Proteoliposomes Reconstituted from Detergent Extract of Chloroplast Membranes: Kinetics and Phospholipid Specificity

    Get PDF
    Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL) translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6±1 min. We also show that: (a) intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b) envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c) Biogenic membrane ATP independent PC flipping activity is protein mediated and (d) the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents
    corecore