40 research outputs found

    Second primary cancers after radiation for prostate cancer: a review of data from planning studies

    Get PDF
    A review of planning studies was undertaken to evaluate estimated risks of radiation induced second primary cancers (RISPC) associated with different prostate radiotherapy techniques for localised prostate cancer. A total of 83 publications were identified which employed a variety of methods to estimate RISPC risk. Of these, the 16 planning studies which specifically addressed absolute or relative second cancer risk using dose–response models were selected for inclusion within this review. There are uncertainties and limitations related to all the different methods for estimating RISPC risk. Whether or not dose models include the effects of the primary radiation beam, as well as out-of-field regions, influences estimated risks. Regarding the impact of IMRT compared to 3D-CRT, at equivalent energies, several studies suggest an increase in risk related to increased leakage contributing to out-of-field RISPC risk, although in absolute terms this increase in risk may be very small. IMRT also results in increased low dose normal tissue irradiation, but the extent to which this has been estimated to contribute to RISPC risk is variable, and may also be very small. IMRT is often delivered using 6MV photons while conventional radiotherapy often requires higher energies to achieve adequate tissue penetration, and so comparisons between IMRT and older techniques should not be restricted to equivalent energies. Proton and brachytherapy planning studies suggest very low RISPC risks associated with these techniques. Until there is sufficient clinical evidence regarding RISPC risks associated with modern irradiation techniques, the data produced from planning studies is relevant when considering which patients to irradiate, and which technique to employ

    Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy

    Get PDF
    BACKGROUND: Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. METHODS: In the treatment plans, each patient’s heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. RESULTS: The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. CONCLUSIONS: We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study

    Current concepts in clinical radiation oncology

    Get PDF

    Quasi-monoenergetic neutron beams with energies from 25 to 70 MeV

    No full text
    Quasi-monoenergetic neutron beams in the energy range from about 25 to 70 MeV have been produced and accurately characterised at the accelerator facility of the Universite Catholique de Louvain (UCL), Belgium. The neutron fluence was determined with a proton recoil telescope and a liquid scintillation detector (NE213). The spectral fluence was measured employing the time-of-flight method with the NE213 detector and a U-238 fission ionisation chamber. The results obtained with the different methods are in agreement within the respective uncertainties. (C) 1999 Elsevier Science B.V. All rights reserved

    A descriptive and broadly applicable model of therapeutic and stray absorbed dose from 6 to 25 MV photon beams

    No full text
    Purpose: To develop a simple model of therapeutic and stray absorbed dose for a variety of treatment machines and techniques without relying on proprietary machine-specific parameters. Methods: Dosimetry measurements conducted in this study and from the literature were used to develop an analytical model of absorbed dose from a variety of treatment machines and techniques in the 6 to 25 MV interval. A modified one-dimensional gamma-index analysis was performed to evaluate dosimetric accuracy of the model on an independent dataset consisting of measured dose profiles from seven treatment units spanning four manufacturers. Results: The average difference between the calculated and measured absorbed dose values was 9.9% for those datasets on which the model was trained. Additionally, these results indicate that the model can provide accurate calculations of both therapeutic and stray radiation dose from a wide variety of radiotherapy units and techniques. Conclusions: We have developed a simple analytical model of absorbed dose from external beam radiotherapy treatments in the 6 to 25 MV beam energy range. The model has been tested on measured data from multiple treatment machines and techniques, and is broadly applicable to contemporary external beam radiation therapy

    The Future Workforce in Cancer Prevention: Advancing Discovery, Research, and Technology

    No full text
    As part of a 2 day conference on October 15 and 16, 2009, a nine-member task force composed of scientists, clinicians, educators, administrators, and students from across the United States was formed to discuss research, discovery, and technology obstacles to progress in cancer prevention and control, specifically those related to the cancer prevention workforce. This article summarizes the task force’s findings on the current state of the cancer prevention workforce in this area and its needs for the future. The task force identified two types of barriers impeding the current cancer prevention workforce in research, discovery, and technology from reaching its fullest potential: 1) limited cross-disciplinary research opportunities with underutilization of some disciplines is hampering discovery and research in cancer prevention, and 2) new research avenues are not being investigated because technology development and implementation are lagging. Examples of impediments and desired outcomes are provided in each of these areas. Recommended solutions to these problems are based on the goals of enhancing the current cancer prevention workforce and accelerating the pace of discovery and clinical translation
    corecore