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Background
Cancer is one of the main causes of death in the world today (Siegel et al. 2014). In the 
field of cancer treatment, proton beams often offer an improved dose distribution com-
pared with the commonly used photon and electron beams, and thus enable dose escala-
tion while sparing normal tissues (Schulz-Ertner and Tsujii 2007; Ma 2009). The proton 
beam therapy has the unique merits mentioned above that makes it particularly attrac-
tive for the treatment of pediatric cancers, cancers in the eye, cancer of skull base, and 
spine cancer (Efstathiou et al. 2013; Levin et al. 2005). The 250 MeV superconducting 
cyclotron for proton therapy is being designed due to the advantages with high mag-
netic field, low operation costs and more compactness compared with the conventional 
magnet technology (Kang et  al. 2010; Newhauser and Zhang 2015; Choi et  al. 2010). 
The design goals of the superconducting cyclotron include high reliability, low activa-
tion, easy maintenance and easy to use. To confirm the feasibility of the superconduct-
ing cyclotron, a superconducting magnet for the 250 MeV cyclotron is being designed 
to evaluate the electromagnetic and cryogenic properties. The superconducting magnet 
system consists of a pair of split coils, cryostat, a pair of HTS current leads, and four GM 

Abstract 

Background:  The superconducting cyclotron is of great importance to treat cancer 
parts of the body. To reduce the operation costs, a superconducting magnet system for 
the 250 MeV proton cyclotron was designed to confirm the feasibility of the supercon-
ducting cyclotron.

Findings:  The superconducting magnet system consists of a pair of split coils, the cry-
ostat and a pair of binary high temperature superconductor current leads. The super-
conducting magnet can reach a central magnetic field of about 1.155 T at 160 A. The 
three GM cryocooler with cooling capacities of 1.5 W at 4.5 K and 35 W at 50 K and one 
GM cryocooler of 100 W at 50 K were adopted to cool the superconducting magnet 
system through the thermosiphon technology.

Conclusion:  The four GM cryocoolers were used to cool the superconducting magnet 
to realize zero evaporation of the liquid helium.

Keywords:  Cryostat, HTS current lead, Proton cyclotron, Superconducting magnet

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and 
indicate if changes were made.

TECHNICAL NOTE

Ren et al. SpringerPlus  (2016) 5:673 
DOI 10.1186/s40064-016-2340-0

*Correspondence:  renyong@
mail.ustc.edu.cn 
Institute of Plasma Physics, 
Hefei Institutes of Physical 
Science, Chinese Academy 
of Sciences, PO Box 1126, 
Hefei 230031, Anhui, People’s 
Republic of China

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/194716493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40064-016-2340-0&domain=pdf


Page 2 of 6Ren et al. SpringerPlus  (2016) 5:673 

cryocoolers. The cryogenic system needs to be designed to realize zero evaporation of 
the liquid helium.

In this paper, the design of the superconducting magnet system is described. Also, the 
electromagnetic and thermal performance of the superconducting magnet and the ther-
mal characteristics of the cryogenic system are analyzed.

Description of the superconducting coils
The proton therapy is of great interest due to its superior spatial dose distribution to a 
tumor (Newhauser and Zhang 2015). The proton beam can be used as a tool to treat the 
eye cancer, lung cancer, and head cancer etc. The proton energy depends on where the 
cancers are located. The generally accepted treatment region is greater than 300 mm in 
depth. The proton beam must have enough energy to treat cancer parts of the body. The 
proton beam energy of 250 MeV can be used to treat in theory the tissues of 400 mm. 
The purpose of this work for selecting the proton energy of 250 MeV was to consider the 
peak dose located at an approximate 400 mm depth for medical application. To obtain 
the energy of 250 MeV for the proton beam, the speed of the proton is accelerated to 
60 % speed of light with a dedicated accelerator. By including the relativistic effect, the 
final orbit radius of the accelerated proton beam can be expressed as (1),

where E0 and E are the rest energy and kinetic energy of the proton, Z is the atomic 
number of the proton and B is the average magnetic field intensity at the radius r.

For the proton, the E0 and Z are about 938 MeV and 1. Therefore, the magnetic field at 
radii of 0.81 m is about 3 T for the proton cyclotron. To reduce the power consumption, 
the superconducting magnet was adopted. To confirm the feasibility of the supercon-
ducting cyclotron, a superconducting magnet is being designed to evaluate the electro-
magnetic and thermal characteristics. The superconducting magnet for the cyclotron 
is composed of a pair of split coils made of NbTi superconductors. Figure 1 shows the 
superconducting magnet system for the 250  MeV proton accelerator. The magnet can 
generate a central magnetic field of 1.155 T at 160 A. The maximum magnetic field of 
the superconducting magnet is about 3.643 T located at the inner surface of the first coil 
with a displacement of 149.4 mm from the mid-plane. The total inductance and stored 
magnetic energy of the magnet are about 344.2 H and 4.406 MJ at 160 A. Table 1 lists 
the design parameters of the split coils. Figure 2 shows the magnetic field distribution of 
the split coils without the iron in the cross sectional plane. The ratio of copper to super-
conductor (Cu/SC ratio) in the cross-section of the NbTi strand is about 7.0. Figure 3 
shows the load line of the superconducting magnet. It is shown that there are sufficient 
temperature margins during the magnet operation. The minimum temperature margin 
of the superconducting magnet is above 1.5 K.

When energized, a large electromagnetic force and stress are generated in the super-
conducting magnet. To improve the mechanical stability of the superconducting mag-
net, a pretension of 80 MPa was exerted on the coils during winding (Chen et al. 2010).

(1)r =

√
E · (E + 2E0)

300 · Z · B
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Fig. 1  Superconducting magnet system for the 250 MeV proton accelerator

Table 1  Design parameters of the superconducting magnet

Coil S1 S2

Strand NbTi NbTi

Strand dimension (mm) 1.80 × 1.20 1.80 × 1.20

Cu/SC ratio 7 7

Insulator Formvar

Inner radii (mm) 910 910

Outer radii (mm) 999.5 999.5

Mid-plane (mm) −119.9 119.9

Height (mm) 136.8 136.8

Turns 5624 5624

Operating current (A) 160

Inductance (H) 300

Stored energy (MJ) 4.406

Central field (T) 1.155

Fig. 2  Magnetic field distribution of the superconducting magnet without iron yoke in the cross sectional 
plane (unit: T)
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Cryostat design of the 250 MeV superconducting cyclotron
The cryogenic system of the superconducting magnet system is composed of the cry-
ostat, GM cryocooler, coldbox, and magnet feeder. The GM cryocooler was used to cool 
the superconducting magnet system through thermosiphon technology. The three GM 
cryocoolers with cooling capacity of 1.5 W at 4.2 K and 35 W at 50 K are located at the 
top of the cooling cryostat to recondense the helium gas from the superconducting coil 
cryostat. The fourth GM cryocooler with 100 W at 50 K was used to cool the thermal 
shield and the other structure. The flexible copper braids were used to connect the cold 
head of the GM cryocoolers to the conduction structure in order to avoid any damage 
due to thermal contraction.

The thermosiphon tube can also be used as a relief channel during a magnet quench. 
To reduce the operational costs of the superconducting magnet, it is required to reduce 
the heat load from the radiation, residual gases and thermal conduction of the supercon-
ducting magnet system. The cryogenic system should be optimized to reduce the heat 
load:

1.	 To reduce the heat load from the residual gases, the vacuum pressure should be 
below 2 * 10−4 Pa.

2.	 In order to reduce the radiation heat load, an aluminum foil with a thickness of 
20 μm has been applied to the surface of the coil case.

3.	 40 Layers of superinsulation material is required to reduce the radiation heat.
4.	 The Al 1100 material of 6  mm in thickness with high thermal conductivity was 

selected as the thermal radiation shield for the cryostat. The maximum temperature 
of the thermal shield should not exceed 60 K. The six copper tubes as cooling chan-
nels were welded on the surface of the thermal shield.

5.	 The 12 tie rods with Carbon fireglass material were adopted to support the cold mass 
of the superconducting coils and to reduce the thermal conduction. The support 
structure for the cold mass is composed of eight longitudinal and four radial tie rods.

6.	 Pre-cooling the superconducting magnet can be accomplished through two differ-
ent methods. In the first option, approximately 1000 L of liquid nitrogen is used to 
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Fig. 3  Load lines of the superconducting magnet (“Iop” stands for the operating current)
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cool the magnet to 77  K. Subsequently a combination of nitrogen gas and helium 
gas is used to exhaust the liquid nitrogen. Finally, liquid helium is admitted into the 
cryostat. In the second option, only helium gas, cooled by the cryocooler is circu-
lated through the superconducting magnet. The second option avoids the challenge 
of removing all the nitrogen, but it requires a longer time.

The calculated heat load from the thermal shield and support structure is about 30 W 
at 60 K. The heat load from the HTS current leads is below 0.3 W at 4.2 K and 25 W at 
60 K, which will be described in the next section. The maximum heat load from proton 
beam losses is below 2.0 W at 4.2 K. The heat loads from the proton losses are not a real 
source in the present study, which can be simulated with the heater during the magnet 
operation. Therefore, there are sufficient cooling capacity with four GM cryocoolers of 
4.5 W at 4.2 K and 205 W at 50 K to cool the superconducting magnet system to realize 
zero evaporation of the liquid helium.

Design of a pair of binary HTS current leads
To reduce the heat leak from the room temperature to the liquid helium temperature, a 
pair of binary HTS current leads were adopted. The binary current leads consists of two 
parts, i.e., the warm end section and the cold end section. The OFHC copper material 
with RRR of about 50 was adopted for the warm end to connect the power supplies. To 
gain enough safety margin, the maximum allowable current density of the OFHC copper 
is limited to 10 A/mm2. The four Bi-2223/Ag–Au HTS tapes were adopted to reduce the 
heat load for the cold end. The stacks of Bi-2223/Ag–Au tapes need to be mechanically 
supported by stainless steel tube for the cold end section. The stainless steel can be used 
as a current shunt during a quench due to its larger heat capacity.

The warm end section of the HTS tapes can be cooled with the 1st stage cold head of 
the GM cryocoolers. The connected material between the warm end of the HTS tapes 
and the copper plate used for heat conduction of the 1st stage cold head of the GM cryo-
coolers is the In/AlN/In structure. The structure has two advantages, i.e., high thermal 
conductivity and excellent electrical insulation. The cold end of the HTS can be cooled 
with the 2nd stage of the GM cryocoolers or the liquid helium. For safety, the cold end 
of the HTS tapes can be cooled with liquid helium. Table 2 lists the design parameters of 
a pair of binary HTS current leads. The polyimide film was used to insulate the current 
leads to ground.

Table 2  Design parameters of a pair of HTS current leads

Material HTS OFHC copper

Maximum operating current (A) 250 250

Ground insulation (V) 500 500

HTS 4 × Bi-2223/Ag–Au –

Joint resistance between HTS and NbTi/Cu (μΩ) <0.2 <1

Operating temperature (K) 5~60 60~300

Heat load (W) <0.3 @4.2 K <25 @60 K
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The temperature sensor of Pt was adopted to monitor the operating temperature of the 
HTS. The HTS should be operated at a temperature below 70 K. The quench protection 
system for the HTS element is activated if the operating temperature exceeds 90 K, or 
the threshold voltage of the HTS element exceeds 2 mV.

Quench protection design of the 250 MeV superconducting cyclotron
The superconducting magnet is powered with a power supply. The stored energy of the 
superconducting magnet is about 4.406  MJ. To protect the superconducting magnet 
against damage during a quench, the appropriate quench protection is required. The 
quench protection circuit needs to be designed to limit the quench hot spot temperature 
and the quench voltage. The two split coils are subdivided into 4 sections to limit the 
quench voltage. Each section is in parallel with a back-to-back diode and a dump resis-
tor. To accelerate the quench propagation, the quench heater was adopted. As a further 
study, we will describe the quench protection design and the relevant quench analysis in 
detail in the following paper.

Conclusion
In this paper, the conceptual design of a superconducting magnet for the 250 MeV proton 
cyclotron has been described. The superconducting magnet consists of two split coils made 
of NbTi superconductor with a large stored energy of 3.84 MJ. The relevant performance 
analysis of the superconducting magnet system were described. The thermal analysis shows 
that the superconducting magnet can realize zero evaporation of the liquid helium. Design 
of the superconducting magnet system is in progress and will be fabricated in future.
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