154 research outputs found

    Association of mitral annulus calcification, aortic valve calcification with carotid intima media thickness

    Get PDF
    BACKGROUND: Mitral annular calcification (MAC) and aortic annular calcification (AVC) may represent a manifestation of generalized atherosclerosis in the elederly. Alterations in vascular structure, as indexed by the intima media thickness (IMT), are also recognized as independent predictors of adverse cardiovascular outcomes. AIM: To examine the relationship between the degree of calcification at mitral and/or aortic valve annulus and large artery structure (thickness). METHODS: We evaluated 102 consecutive patients who underwent transthoracic echocardiography and carotid artery echoDoppler for various indications; variables measured were: systemic blood pressure (BP), pulse pressure (PP=SBP-DBP), body mass index (BMI), fasting glucose, total, HDL, LDL chlolesterol, triglycerides, cIMT. The patients were divided according to a grading of valvular/annular lesions independent scores based on acoustic densitometry: 1 = annular/valvular sclerosis/calcification absence; 2 = annular/valvular sclerosis; 3 = annular calcification; 4 = annular-valvular calcification; 5 = valvular calcification with no recognition of the leaflets. RESULTS: Patient score was the highest observed for either valvular/annulus. Mean cIMT increased linearly with increasing valvular calcification score, ranging from 3.9 ± 0.48 mm in controls to 12.9 ± 1.8 mm in those subjects scored 5 (p < 0.0001). In the first to fourth quartile of cIMT values the respective maximal percentual of score were: score 1: 76.1%, score 2: 70.1%, score 4: 54.3% and score 5: 69.5% (p > 0.0001). CONCLUSION: MAC and AVC score can identify subgroups of patients with different cIMT values which indicate different incidence and prevalence of systemic artery diseases. This data may confirm MAC-AVC as a useful important diagnostic parameter of systemic atherosclerotic disease

    Health-related Quality of Life of Thai children with HIV infection: a comparison of the Thai Quality of Life in Children (ThQLC) with the Pediatric Quality of Life Inventory™ version 4.0 (PedsQL™ 4.0) Generic Core Scales

    Get PDF
    The purpose of this study was to evaluate the reliability and validity of the Thai Quality of Life in Children (ThQLC) and compare it with the Pediatric Quality of Life Inventory (PedsQL™ 4.0) in a sample of children receiving long-term HIV care in Thailand. The ThQLC and the PedsQL™ 4.0 were administered to 292 children with HIV infection aged 8–16 years. Clinical parameters such as the current viral load, CD4 percent, and clinical staging were obtained by medical record review. Three out of five ThQLC scales and three out of four PedsQL™ 4.0 scales had acceptable internal consistency reliability (i.e., Cronbach’s alpha &gt;0.70). Cronbach’s alpha values of each scale ranged from 0.52 to 0.75 and 0.57 to 0.75 for the ThQLC and the PedsQL™ 4.0, respectively. Corresponding scales (physical functioning, emotional well-being, social functioning, and school functioning) of the ThQLC and the PedsQL™ 4.0 correlated substantially with one another (r = 0.47, 0.67, 0.59 and 0.56, respectively). Both ThQLC and PedsQL™ 4.0 overall scores significantly correlated with the child’s self-rated severity of the illness (r = −0.23 for the ThQLC and −0.28 for the PedsQL™ 4.0) and the caregiver’s rated overall quality of life (r = 0.07 for the ThQLC and 0.13 for the PedsQL™ 4.0). The overall score of the ThQLC correlated with clinical and immunologic categories of the United State-Centers for Disease Control and Prevention (US-CDC) classification system (r = −0.12), while the overall score of the PedsQL™ 4.0 significantly correlated with the number of disability days (r = −0.12) and CD4 percent (r = −0.15). However, the overall score from both instruments were not significantly different by clinical stages of HIV disease. A multitrait-multimethod analysis results demonstrated that the average convergent validity and off-diagonal correlations were 0.58 and 0.45, respectively. Discriminant validity was partially supported with 62% of validity diagonal correlations exceeding correlations between different domains (discriminant validity successes). The Hays-Hayashi MTMM quality index was 0.61. Multivariate regression analysis revealed that the ThQLC physical functioning scale provided unique information in predicting child self-rated severity of the illness and overall quality of life beyond that explained by the PedsQL™ 4.0 in Thai children with HIV infection. We found evidence in support of the reliability and validity of the ThQLC and the PedsQL™ 4.0 for measuring the health-related quality of life of Thai children with HIV infection

    Breakpoint mapping of 13 large parkin deletions/duplications reveals an exon 4 deletion and an exon 7 duplication as founder mutations

    Get PDF
    Early-onset Parkinson’s disease (EOPD) has been associated with recessive mutations in parkin (PARK2). About half of the mutations found in parkin are genomic rearrangements, i.e., large deletions or duplications. Although many different rearrangements have been found in parkin before, the exact breakpoints involving these rearrangements are rarely mapped. In the present study, the exact breakpoints of 13 different parkin deletions/duplications, detected in 13 patients out of a total screened sample of 116 EOPD patients using Multiple Ligation Probe Amplification (MLPA) analysis, were mapped using real time quantitative polymerase chain reaction (PCR), long-range PCR and sequence analysis. Deletion/duplication-specific PCR tests were developed as a rapid and low cost tool to confirm MLPA results and to test family members or patients with similar parkin deletions/duplications. Besides several different deletions, an exon 3 deletion, an exon 4 deletion and an exon 7 duplication were found in multiple families. Haplotype analysis in four families showed that a common haplotype of 1.2 Mb could be distinguished for the exon 7 duplication and a common haplotype of 6.3 Mb for the deletion of exon 4. These findings suggest common founder effects for distinct large rearrangements in parkin

    Variable Carbon Catabolism among Salmonella enterica Serovar Typhi Isolates

    Get PDF
    BACKGROUND: Salmonella enterica serovar Typhi (S. Typhi) is strictly a human intracellular pathogen. It causes acute systemic (typhoid fever) and chronic infections that result in long-term asymptomatic human carriage. S. Typhi displays diverse disease manifestations in human infection and exhibits high clonality. The principal factors underlying the unique lifestyle of S. Typhi in its human host during acute and chronic infections remain largely unknown and are therefore the main objective of this study. METHODOLOGY/PRINCIPAL FINDINGS: To obtain insight into the intracellular lifestyle of S. Typhi, a high-throughput phenotypic microarray was employed to characterise the catabolic capacity of 190 carbon sources in S. Typhi strains. The success of this study lies in the carefully selected library of S. Typhi strains, including strains from two geographically distinct areas of typhoid endemicity, an asymptomatic human carrier, clinical stools and blood samples and sewage-contaminated rivers. An extremely low carbon catabolic capacity (27% of 190 carbon substrates) was observed among the strains. The carbon catabolic profiles appeared to suggest that S. Typhi strains survived well on carbon subtrates that are found abundantly in the human body but not in others. The strains could not utilise plant-associated carbon substrates. In addition, α-glycerolphosphate, glycerol, L-serine, pyruvate and lactate served as better carbon sources to monosaccharides in the S. Typhi strains tested. CONCLUSION: The carbon catabolic profiles suggest that S. Typhi could survive and persist well in the nutrient depleted metabolic niches in the human host but not in the environment outside of the host. These findings serve as caveats for future studies to understand how carbon catabolism relates to the pathogenesis and transmission of this pathogen

    Sulindac Sulfide Reverses Aberrant Self-Renewal of Progenitor Cells Induced by the AML-Associated Fusion Proteins PML/RARα and PLZF/RARα

    Get PDF
    Chromosomal translocations can lead to the formation of chimeric genes encoding fusion proteins such as PML/RARα, PLZF/RARα, and AML-1/ETO, which are able to induce and maintain acute myeloid leukemia (AML). One key mechanism in leukemogenesis is increased self renewal of leukemic stem cells via aberrant activation of the Wnt signaling pathway. Either X-RAR, PML/RARα and PLZF/RARα or AML-1/ETO activate Wnt signaling by upregulating γ-catenin and β-catenin. In a prospective study, a lower risk of leukemia was observed with aspirin use, which is consistent with numerous studies reporting an inverse association of aspirin with other cancers. Furthermore, a reduction in leukemia risk was associated with use of non-steroidal anti-inflammatory drug (NSAID), where the effects on AML risk was FAB subtype-specific. To better investigate whether NSAID treatment is effective, we used Sulindac Sulfide in X-RARα-positive progenitor cell models. Sulindac Sulfide (SSi) is a derivative of Sulindac, a NSAID known to inactivate Wnt signaling. We found that SSi downregulated both β-catenin and γ-catenin in X-RARα-expressing cells and reversed the leukemic phenotype by reducing stem cell capacity and increasing differentiation potential in X-RARα-positive HSCs. The data presented herein show that SSi inhibits the leukemic cell growth as well as hematopoietic progenitors cells (HPCs) expressing PML/RARα, and it indicates that Sulindac is a valid molecular therapeutic approach that should be further validated using in vivo leukemia models and in clinical settings

    Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET) approach to investigate the melanoma transcriptome and characterize the global pathway aberrations.</p> <p>Methods</p> <p>GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo). Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes.</p> <p>Results</p> <p>Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg<sup>++</sup>, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain region(s) of the pathway. Expression levels of c-<it>Myc </it>and <it>Trp53 </it>were also higher in melanoma. Moreover, transcriptional variants resulted from alternative transcription start sites or alternative polyadenylation sites were found in <it>Ras </it>and genes encoding adhesion or cytoskeleton proteins such as integrin, β-catenin, α-catenin, and actin.</p> <p>Conclusion</p> <p>The highly correlated results unmistakably point to a systematic downregulation of mitochondrial activities, which we hypothesize aims to downgrade the mitochondria-mediated apoptosis and the dependency of cancer cells on angiogenesis. Our results also demonstrate the advantage of using the PET approach in conjunction with KEGG database for systematic pathway analysis.</p

    Interleukin-6 Is a Potential Biomarker for Severe Pandemic H1N1 Influenza A Infection

    Get PDF
    Pandemic H1N1 influenza A (H1N1pdm) is currently a dominant circulating influenza strain worldwide. Severe cases of H1N1pdm infection are characterized by prolonged activation of the immune response, yet the specific role of inflammatory mediators in disease is poorly understood. The inflammatory cytokine IL-6 has been implicated in both seasonal and severe pandemic H1N1 influenza A (H1N1pdm) infection. Here, we investigated the role of IL-6 in severe H1N1pdm infection. We found IL-6 to be an important feature of the host response in both humans and mice infected with H1N1pdm. Elevated levels of IL-6 were associated with severe disease in patients hospitalized with H1N1pdm infection. Notably, serum IL-6 levels associated strongly with the requirement of critical care admission and were predictive of fatal outcome. In C57BL/6J, BALB/cJ, and B6129SF2/J mice, infection with A/Mexico/4108/2009 (H1N1pdm) consistently triggered severe disease and increased IL-6 levels in both lung and serum. Furthermore, in our lethal C57BL/6J mouse model of H1N1pdm infection, global gene expression analysis indicated a pronounced IL-6 associated inflammatory response. Subsequently, we examined disease and outcome in IL-6 deficient mice infected with H1N1pdm. No significant differences in survival, weight loss, viral load, or pathology were observed between IL-6 deficient and wild-type mice following infection. Taken together, our findings suggest IL-6 may be a potential disease severity biomarker, but may not be a suitable therapeutic target in cases of severe H1N1pdm infection due to our mouse data

    The transcription factor ERG regulates a low shear stress-induced anti-thrombotic pathway in the microvasculature.

    Get PDF
    Endothelial cells actively maintain an anti-thrombotic environment; loss of this protective function may lead to thrombosis and systemic coagulopathy. The transcription factor ERG is essential to maintain endothelial homeostasis. Here, we show that inducible endothelial ERG deletion (ErgiEC-KO) in mice is associated with spontaneous thrombosis, hemorrhages and systemic coagulopathy. We find that ERG drives transcription of the anticoagulant thrombomodulin (TM), as shown by reporter assays and chromatin immunoprecipitation. TM expression is regulated by shear stress (SS) via Krüppel-like factor 2 (KLF2). In vitro, ERG regulates TM expression under low SS conditions, by facilitating KLF2 binding to the TM promoter. However, ERG is dispensable for TM expression in high SS conditions. In ErgiEC-KO mice, TM expression is decreased in liver and lung microvasculature exposed to low SS but not in blood vessels exposed to high SS. Our study identifies an endogenous, vascular bed-specific anticoagulant pathway in microvasculature exposed to low SS
    corecore