589 research outputs found

    A study on RFID adoption for vehicle tracking in container terminal

    Get PDF
    Purpose: Numerous studies discuss that Radio Frequency Identification (RFID) technology can provide better container handling efficiency; however, relative lack of research concerns the tracking and monitoring the movement of vehicle in the container terminal environment. Thus, this study aims at discussing the feasibility of applying RFID for vehicle tracking purpose in a container terminal. Design/methodology/approach: This study makes use of a series of experiments in a container terminal to discuss the factors that affect the use of RFID in the terminal. The possibility and accuracy of using RFID in such challenging environment is also investigated. These propositions are investigated by a case study. Findings: The experimental results indicate that the RFID communication is good at the containers area which occupies nearly all the area in the container terminal. However, in other area such as sea side and free area, the performance is not good and 100% readability only achieved in 5m and 10m in free area and sea side respectively. Originality/value: The container terminal environment, which consists of different transport vehicles for onward transportation, will affect the performance of RFID readability. Poor setup of the RFID reader and tag will lower the feasibility of RFID adoption as well as increase the cost. In order to address the challenges of implementing RFID in the container terminal environment, this paper provides a series of real site testing experiments to study the RFID performance in the container terminal environment. This represents an original contribution of value to future research and practice in the RFID adoptions in container terminal environmentPeer Reviewe

    Thermal control with image processing and fuzzy neural networks

    Full text link

    Numerical analysis of complex systems evolution with phase transformations at different spatial scales

    Get PDF
    This paper shows the existence of a critical dimension for finite length nanowires exhibiting shape memory effects. We give a brief survey of phase transformations, their classifications, and provide the basis of mathematical models for the phenomena involving such transformations, focusing on shape memory effects at the nanoscale. Main results are given for the dynamic of square-to-rectangular transformations modelled on the basis of the modified Ginzburg-Landau theory. The results were obtained by solving a fully coupled system of partial differential equations, accounting for the thermal field, a feature typically neglected in recent publications on the subject when microstructures of nanowires were modelled with phase-field approximations. Representative examples are shown for nanowires of length 2000nm and widths ranging from 200nm to 50nm. The observed microstructure patterns are different from the bulk situation due to the fact that interfacial energy becomes comparable at the nanoscale with the bulk energy

    Dynamic Stress Intensity Factor for Interfacial Cracks of Mode III Emanating from Circular Cavities in Piezoelectric Bimaterials

    No full text
    This paper investigates dynamic stress intensity factors in piezoelectric bimaterials with interfacial cracks emanating from the circular cavities under steady SH-waves. The interfacial cracks are assumed to be permeable. Green functions for the experiment were constructed through complex variable and wave function expansion methods. Based on the crack-division and conjunction techniques, a series of Fredholm integral equations of the first kind were established to calculate the stress intensity of the crack tips. Direct numerical integration was used to solve the equations. Some numerical results were plotted to indicate the influence of the defect geometry, material constants, and SH-wave frequencies on dynamic stress intensity factors

    Crystal Structure, Infrared Spectra, and Microwave Dielectric Properties of Temperature-Stable Zircon-Type (Y,Bi)VO<inf>4</inf> Solid-Solution Ceramics

    Get PDF
    A series of (Bi 1-x Y x )VO 4 (0.4 ≤ x ≤ 1.0) ceramics were synthesized using the traditional solid-state reaction method. In the composition range of 0.4 ≤ x ≤ 1.0, a zircon-type solid solution was formed between 900 and 1550 °C. Combined with our previous work (scheelite monoclinic and zircon-type phases coexist in the range of x < 0.40), a pseudobinary phase diagram of BiVO 4 -YVO 4 is presented. As x decreased from 1.0 to 0.40, the microwave permittivity (ϵ r ) of (Bi 1-x Y x )VO 4 ceramics increased linearly from 11.03 to 30.9, coincident with an increase in the temperature coefficient of resonant frequency (TCF) from -61.3 to +103 ppm/°C. Excellent microwave dielectric properties were obtained for (Bi 0.3 Y 0.7 )VO 4 sintered at 1025 °C and (Bi 0.2 Y 0.8 )VO 4 sintered at 1075 °C with ϵ r ∼ 19.35, microwave quality factor (Qf) ∼ 25 760 GHz, and TCF ∼ +17.8 ppm/°C and ϵ r ∼ 16.3, Qf ∼ 31 100 GHz, and TCF ∼ -11.9 ppm/°C, respectively. Raman spectra, Shannon's additive rule, a classical oscillator model, and far-infrared spectra were employed to study the structure-property relations in detail. All evidence supported the premise that Bi-based vibrations dominate the dielectric permittivity in the microwave region

    Reinforcement of natural rubber with core-shell structure silica-poly(Methyl Methacrylate) nanoparticles

    Get PDF
    A highly performing natural rubber/silica (NR/SiO2) nanocomposite with a SiO2 loading of 2&thinsp;wt% was prepared by combining similar dissolve mutually theory with latex compounding techniques. Before polymerization, double bonds were introduced onto the surface of the SiO2 particles with the silane-coupling agent. The core-shell structure silica-poly(methyl methacrylate), SiO2-PMMA, nanoparticles were formed by grafting polymerization of MMA on the surface of the modified SiO2 particles via in situ emulsion, and then NR/SiO2 nanocomposite was prepared by blending SiO2-PMMA and PMMA-modified NR (NR-PMMA). The Fourier transform infrared spectroscopy results show that PMMA has been successfully introduced onto the surface of SiO2, which can be well dispersed in NR matrix and present good interfacial adhesion with NR phase. Compared with those of pure NR, the thermal resistance and tensile properties of NR/SiO2 nanocomposite are significantly improved

    High quality GaMnAs films grown with As dimers

    Full text link
    We demonstrate that GaMnAs films grown with As2 have excellent structural, electrical and magnetic properties, comparable or better than similar films grown with As4. Using As2, a Curie temperature of 112K has been achieved, which is slightly higher than the best reported to date. More significantly, films showing metallic conduction have been obtained over a much wider range of Mn concentrations (from 1.5% to 8%) than has been reported for films grown with As4. The improved properties of the films grown with As2 are related to the lower concentration of antisite defects at the low growth temperatures employed.Comment: 8 pages, accepted for publication in J. Crystal Growt

    High Quality Factor, Ultralow Sintering Temperature Li6B4O9 Microwave Dielectric Ceramics with Ultralow Density for Antenna Substrates

    Get PDF
    Dense Li6B4O9microwave dielectric ceramics were synthesized at low temperature via solid-state reaction using Li2CO3and LiBO2. Optimum permittivity ∼ 5.95, quality factor ∼ 41 800 GHz and temperature coefficient of resonant frequency ∼ - 72 ppm/°C were obtained in ceramics sintered at 640 °C with a ultrasmall bulk density ∼2.003 g/cm3(∼95% relative density, the smallest among all the reported microwave dielectric ceramics). Li6B4O9ceramics were shown to be chemically compatible with silver electrodes but reacted with aluminum forming Li3AlB2O6and Li2AlBO4secondary phases. A prototype patch antenna was fabricated by tape casting and screen printing. The antenna resonated at 4.255 GHz with a bandwidth ∼279 MHz at -10 dB transmission loss (S11) in agreement with simulated results. The Li6B4O9microwave dielectric ceramic possesses similar microwave dielectric properties to the commercial materials but much lower density and could be a good candidate for both antenna substrate and low-temperature cofired ceramics technology
    corecore