
Abstract

This paper shows the existence of a critical dimension for finite length nanowires

exhibiting shape memory effects. We give a brief survey of phase transformations,

their classifications, and provide the basis of mathematical models for the phenomena

involving such transformations, focusing on shape memory effects at the nanoscale.

Main results are given for the dynamic of square-to-rectangular transformations mod-

elled on the basis of the modified Ginzburg-Landau theory. The results were obtained

by solving a fully coupled system of partial differential equations, accounting for the

thermal field, a feature typically neglected in recent publications on the subject when

microstructures of nanowires were modelled with phase-field approximations. Rep-

resentative examples are shown for nanowires of length 2000nm and widths ranging

from 200nm to 50nm. The observed microstructure patterns are different from the bulk

situation due to the fact that interfacial energy becomes comparable at the nanoscale

with the bulk energy.

Keywords: phase transformations, nanoscale, shape memory effects, Ginzburg-Landau

theory, nonlinear thermoelasticity.

1 Introduction

Phase transformations are ubiquitous in many problems of science and engineering

where we have to analyze the evolution of complex nonlinear systems. A complex sys-

tem usually has interconnected parts such that one or more properties (or the behavior)

of the system is not obvious from the properties (or the behaviors) of the individual

parts. Alternatively, a complex system may operate under the combined influence of
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several different physical fields that can bring new properties and/or behavior of the

system compared to the situation where each such field acts separately. Complex sys-

tems may include human factors as it is known that with the increasing complexity of

technological systems that operate in dynamically changing environments and require

human supervision or a human operator, the relative share of human errors is increas-

ing across all modern applications [17]. In some cases, the associated models can

be constructed on the basis of the Markov Chain approximation methodology linking

deterministic and stochastic situations [11]. Furthermore, many complex systems, in-

cluding those exhibiting phase transformations, often require some phenomenological

paradigms for atomistic matter interactions and/or incorporating stochastic elements

into mathematical models which is often done with the concept of relativistic Brow-

nian motion. We do not consider such models in the present paper, but we refer the

interested reader to a recent survey [4] as well as to applications of some of these

models [29, 17]. In what follows, we focus on those complex systems which are cou-

pled via interacting components and/or fields, and which are usually well described

by problems of thermolasticity [12, 26], including hyperbolic [24], electroelasticity

[18, 21], flexoelectricity [22], thermo-piezoelectricity [13, 23] and other problems of

coupled field theory [14, 28].

In this contribution, we consider one class of such problems that are brought about

by smart materials and structures technologies where materials with shape memory

effect found numerous applications at different spatial scales. In particular, we start

from the general 3D model of dynamic nonlinear thermoelasticity, based on a coupled

system of partial differential equations (PDEs), which we first apply for the descrip-

tion of shape memory alloys (SMA) dynamics and associated phase transformations.

With the center-manifold-based procedures this general model can be reduced system-

atically to new simplified models preserving essential features of the SMA dynamics

[15]. For some special cases, the reduction procedures can be carried out very ef-

ficiently with the Proper Orthogonal Decomposition (POD) methodology, while for

other cases techniques such as finite volume [27] and finite element methods can be

used. For practical numerical simulations of SMA samples, the constructed mathemat-

ical model of coupled nonlinear system of PDEs can also be reduced to a system of

differential-algebraic equations, where the Chebyshev collocation method can be em-

ployed for the spatial discretization, while the backward differentiation can be used

for the integration in time [26]. We briefly survey these numerical methodologies.

From a mathematical point of view, the system we are dealing with is a system of

coupled nonlinear time-dependent PDEs, known as the Ginzburg-Landau-Devonshire

system. The effect of internal friction on wave propagation patterns under shock load-

ings can be analyzed in such systems via implementing stress boundary conditions. In

the last part of this contribution, we discuss a relatively simple and computationally

inexpensive model to study phase transformations in finite nanostructures with our

major focus given here to nanowires of finite length. We show that in the latter case,

the models describing shape memory effects at the mesoscopic level can be reduced

to a 2D case and we demonstrate our results on the example of the cubic-to-tetragonal

transformations.
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2 Phase Transformations and Their Applications

Phase transformations have been firmly in the realm of science and engineering at

least from 1876 due to works of J.W. Gibbs. In engineering, physical, chemical, geo-

logical, climate sciences phase transformations are indispensable in studying complex

phenomena, systems, and processes. There is a growing interest to phase transfor-

mation phenomena in biological sciences, in particular when we have to deal with

biomolecular structures, cell biology problems, and in many other areas (e.g., [9, 19]).

Space science and astrophysics are also the areas were phase transformations found

numerous applications. They are also becoming more frequent in less traditional areas

of social sciences, finance and other fields (e.g. [29] and references therein).

Although, in the mathematics community the original studies of phase transforma-

tions are often associated with the name of J. Stefan (1889), the earlier contributions

of J. W. Gibbs played a substantial role in the development of theory of phase trans-

formations. His work ”On the Equilibrium of Heterogeneous Substances” finalized in

1900 represented an important milestone in this theory. Other important contributions

include works of E. Ising on one-dimensional mathematical models for ordering of

spins(1925), and later of L. Onsager (1930) 2D models. The works of L. Onsager

(1968) and I. Prigogine (1977) were honored with Nobel prize. The theoretical frame-

work of critical phenomena and phase transitions that is used in this paper is due to

L. Landau (1937), E. Lifshitz (1941), V. Ginzburg and L. Landau (1950) and many

others, including M.E. Fisher (1959), M.E. Fisher, A.I. Levanyuk (1959), V.L. Gins-

burg (1960). This followed by the works of K.G. Wilson on the general problem of

fluctuation-driven phase transitions (1972), F. Falk on one-dimensional Landau theory

models for materials with memory (1980), and F. Falk and P. Konopka on 3D Landau

theory for materials with memory (1990). In its essence, the theory asks the ques-

tion on how to describe order in terms of irreducible representations of the symmetry

group, and introduces the notion of spontaneous symmetry violation, as well the order

parameter as a measure of this violation.

Mathematically appealing classification of phase transformations was given by P.

Ehrenfest (1933) based on the degree of non-analyticity involved (discontinuity in the

corresponding derivatives of the free energy function). In practice, however, we still

use a classification that stems from J.W. Gibbs:

• First-order phase transitions are associated with ”mixed-phase regimes” where

some parts of the system have completed the transition and others have not

(examples include the solid/liquid/gas transitions as well as Bose-Einstein con-

densation),

• Second-order phase transitions are continuous phase transitions which are easier

to study (examples include ferromagnetic, superfluids, where critical phenom-

ena are phenomena associated with them),

• Infinite-order phase transitions (examples include quantum phase transitions in
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2D; superconductors provide a practical area for studies of these transforma-

tions).

In what follows we focus on the first order solid-solid phase transformations.

3 Mathematical Models of Phase Transformations with

Non-Monotone Free Energy

The basic idea of the Landau theory lies on the premises that when symmetry is broken

under the phase transition, we need to introduce one or more extra variables to describe

the state of the system. In particular, the order parameter describes the character and

strength of the broken symmetry. The implications of phase transitions are such that

the formation of topological defects in the structure is expected, so that the order

parameter may take on different values in different parts of the system (e.g., due to

thermal fluctuations). It is known that a 3D system can be described by its Helmholtz

free energy density f as

A =

∫

d3xf(m,T ), (1)

where f is a function of the local order parameter m and T :

f(m,T ) = f0(T ) + α(T )m2 +
1

2
β(T )m4 + ...(Ginzburg term). (2)

This description can include strongly nonlinear phenomena directly related to phase

transformations including hysteresis and other memory effects. A mathematically rig-

orous notion of hysteresis operators and their systematic analysis is of a relatively

recent origin (due to Krasnoselsky, Pokrovsky in the 70-ies). We only note here that

the original notion was introduced for parabolic type of equations, while a more prac-

tically important case of hyperbolic PDEs with hysteresis remains much less studied.

One of the important sources of such complex nonlinear behaviour as hysteresis of-

ten lies with coupled dynamic problems which are the rule rather than an exception

in mathematics and its applications. Recall that the lack of coupling in the Newton’s

model led to calculation of speed of sounds that was around 15% off its true value (the

model was corrected by Laplace at the time of the development of thermodynamics,

more than 100 years later).

The starting point of the Landau-Ginzburg-Devonshire model for the free energy

function lies with the assumption that any isothermal equilibrium configuration of the

lattice corresponds to a minimum (either local or global) of that function. In order

to describe shape memory effects in materials such as alloys we have to account for

a possibly of simultaneous existence of several phases: (a) a high temperature phase

(austenite) and (b) a low temperature phase (martensite). Therefore, the free energy

function would contain a coupling term that couples thermal and mechanical fields
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as it is important to be able to deal with different equilibrium configurations of the

lattice simultaneously. In a most generic setting, the mathematical description of the

appropriate measure starts from the approximation of the free energy function by poly-

nomials with temperature-depending coefficients. This approximation with respect to

an order parameter characterising the phase transformation has the following form:

Ψ(~ε, θ) = ψ0(θ) +
∞
∑

i=1

ψi(~ε, θ), (3)

where independent parameters of the n-th order for n = 1, 2, . . . are determined

through strain invariants, In
j as follows

ψn =

jn

∑

j=1

ψn
j In

j and ψ0(θ) = ψ0

0
(θ) . (4)

In order to make the free energy function invariant with respect to the symmetry group

of austenite, the upper limit of the sum, jn, is chosen as the number of all invariant

directions associated with a representation of the 48th order cubic symmetry group of

the parent (austenite) phase. Similar to the Falk-Konopka ideas, by using physically

justified assumptions, it is possible to reduce the number of required parameters in

the 3D case (although they remain in the general case temperature dependent). For

instance, the copper-based alloys (e.g., Cu14 Al3 Ni83), we have

Ψ = ψ0(θ) +
3
∑

j=1

ψ2

jI2

j +
5
∑

j=1

ψ4

jI4

j +
2
∑

j=1

ψ6

jI6

j , (5)

where, for example, strain invariant I2

2
is determined by

I2

2
=

1

12
(2ε33 − ε11 − ε22)

2 +
1

4
(ε11 − ε22)

2. (6)

This free energy function is used along with the system of nonlinear thermoelasticity

which is written in the spirit of the Landau theory of structural phase transitions [16]:

ρ
∂2u

∂t2
= ∇

x
· s + F with F = ρ(f + f̂) − ρ̂v , (7)

ρ
∂e

∂t
− sT : (∇v) + ∇ · q = g , (8)

where

g = ρ(h+ ĥ) − ρf̂ · v − ρ̂

(

e− v2

2

)

. (9)

This system is supplemented by corresponding initial and boundary conditions.

5



For one and two dimensions, this system is substantially simplified, For example,

within this framework, the governing equations for the dynamics of a SMA rod are

[27]:

ρ
∂2u

∂t2
=

∂

∂x

(

k1 (θ − θ1)
∂u

∂x
− k2

(

∂u

∂x

)3

+ k3

(

∂u

∂x

)5
)

+ F, (10)

Cv

∂θ

∂t
= k

∂2θ

∂x2
+ k1θ

∂u

∂x

∂v

∂x
+G, (11)

where k is the thermal conductivity of the material, Cv is the specific heat constant of

the material, θ1 > 0 (characterises a critical temperature of the material), k1, k2 and

k3 are material-specific constants that characterise the material free energy.

A similar model, generalized to the 2D case, is used in the next section for mod-

elling nanowires.

4 Numerical Approximations of Mathematical Models

with Phase Transformations

As seen from model (10)-(11), this model incorporates a non-monotone stress-strain

relationship. Therefore, it is quite natural to treat the stress-strain dependency as a

purely algebraic equation by introducing ε, v, and θ as differential variables - this idea

for dynamic systems describing shape memory effects was first proposed in [16].

The above methodology is not straightforward to generalize to the general 3D case

where we proposed to apply the center manifold technique (CMT). Recall (e.g., [15])

that a centre manifold need not be unique, but the differences between the possible

centre manifolds are of the same order as the differences we set out to ignore in es-

tablishing the low dimensional model. Next, the centre manifold technique allows us

to derive not only governing equations for the model, but also initial and boundary

conditions. Finally, the CMT does not need to be linked to just the one equilibrium:

it is important in the context of phase transformations where we have to deal with

several different equilibrium configurations. This theory in the context of SMA was

developed in [15].

We also note that recently, the Chebyshev collocation method was employed for the

numerical analysis of the PDE model for phase transformations (10)-(11), followed by

the application of an extended proper orthogonal decomposition to construct a set of

empirical orthogonal eigenmodes of the dynamics, with which system characteristics

can be optimally approximated within a range of different temperatures and under

various mechanical and thermal loadings [28].

While constructing numerical approximations to models based on differential equa-

tions, conservative approximations, where we wish to preserve invariant properties of

the original differential model in the numerical approximation, play a very important
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role. Such numerical approximations go back to works of Courant (1928) and they

have been developed for large classes of non-linear PDE models too (e.g., Abrashin,

1986; Furihata, 2001, and many others), including coupled systems describing a phase

separation phenomenon among others (Canh-Hilliard type of models). Our approach

to the construction of such conservative schemes in the context of materials with mem-

ory was based on the modified integro-interpolational methodology where in addition

to the interpolation of the solution with respect to independent variables, we also per-

form the Steklov averaging of nonlinear terms. Such schemes were constructed for

the first time in the context of SMA in [8] where the interested reader can also find

both their theoretical analysis and applications.

4.1 Applications to Finite Length Nanowires

The study of low dimensional nanostructures is an important field in applications with

many open problems [6]. At the same, the interest to nanostructured martensitic ma-

terials continues to grow as there is evidence to suggest that the unique shape-memory

properties of martensitic materials can persist even at the nanoscale, in particular in

nanowires [25]. Several new models have recently been proposed in the literature to

explain phenomena of pseudoelasticity and shape memory in nanowires (e.g., [5]).

The major emphasis was given to the elastic part of behaviour which, however, was

not coupled to the temperature field. Similarly, typical Molecular Dynamics (MD)

runs, that have been recently carried out for nanowires, are for fixed temperature

(e.g. [7]). The authors of [5] claimed that elastic responses were only weakly de-

pendent on temperature. However, a complete thermoelastic analysis was not carried

out. Although there are several other publications up to date with MD simulations

of finite size nanowires, the issue of temperature is far from trivial within the MD

framework [1]. At the same, by now it is clear that a number of important charac-

teristics of nanowires are essentially temperature dependent, including their critical

size [1]. Many such characteristics can be well studied by using much more tractable

models such as those discussed in Section 3 of this paper. In [2] the authors consid-

ered a model based on the Landau phase field framework. However, the temperature

was not included as a coupled quantity and only the elastic part of behaviour under

fixed temperature was analyzed. In what follows, we adapt the theory and numer-

ical approximations discussed above to the situation where mechanical and thermal

fields are coupled. In particular, we solve the following system of partial differential

equations:

ρ
∂2ui(r, t)

∂t2
=
∑ ∂σij(r, t)

∂rj

+ η∇2vi(r, t) (12)

cv
∂T

∂t
= k

(

∂2T

∂x2
+
∂2T

∂y2

)

+ a2Te2
∂e2

∂t
+ g, (13)

where ρ is mass density, v is time derivative of displacement u, η is damping term,

cv is specific heat constant, k is thermal conductivity and g is thermal loading. The
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model is considered in a bounded domain Ω with corresponding initial and boundary

conditions.

These equations are coupled through the modified Ginzburg-Landau free energy

function which we take in the form for square-to-rectangular transformations (al-

though this can be generalized to other cases too, e.g. [3]):

G =

∫

Ω

{

A22

2

T − Tm

Tm

(e2)
2 − A24

4
(e2)

4 +
A26

6
(e2)

6

+
A1

2

[

e1 − x12 (e2)
2
]2

+
A3

2
(e3)

2 +
kg

2
||∇ · e2||2

}

dr, (14)

where e1, e2 and e3 are hydrostatic, deviatoric and shear strain respectively defined

as e1 = (εxx + εyy) /
√

2, e2 = (εxx − εyy) /
√

2, e3 = (εxy + εyx) /2, and εij =
[(∂ui/∂xj) + (∂uj/∂xi)] /2 is a Cauchy-Lagrangian strain tensor (with the repeated

index convention used); ui, i = 1, 2 are displacement along x and y directions re-

spectively, T is material temperature, Tm is the austenite-martensite transformation

temperature, x12 is the volume fraction and
−→
r is space coordinate vector of domain

Ω. The deviatoric strain e2 is used as an order parameter to characterize the austenite

(e2 = 0) and martensite phase (e2 6= 0) in the microstructure.

The first three terms in Eq. (14) represents the Landau free energy which defines

the first-order phase transformation. The Landau free energy is a convex function

of e2. When the temperature is higher than Tm, only austenite is stable. When the

temperature is lower than Tm, e2 becomes non-convex and has two local minima asso-

ciated with two martensite variants. If the temperature is around Tm, the Landau free

energy has three minima, two of which are associated with martensitic phases and the

remaining one associated with austenite. The fourth and fifth term in Eq. (14) stabi-

lizes the twin structure for T < Tm [20]. In addition, the fourth term also considers the

effect of volume fraction x12. The strain gradient term ||∇ · e2|| does not contribute to

the bulk energy, since there is no gradient within austenite and martensite, it plays a

role similar to interface energy (both austenite-martensite and martensite-martensite).

This gradient prevents the system from creating an infinite number of interfaces [3].

The stresses acting on the domain Ω can be calculated from Eq. (14) as

σij(r, t) =
δG

δεij(r, t)
. (15)

From Eq. (15) under sumplifications, we get

σ11 =
√

2(Ae2 − 2Be3

2
+ 3Ce5

2
+De1 − 2De1e2x12 −De2

2
x12 + 2De3

2
x2

12
) − kg∇2

xe2

σ12 = σ21 = Eεxy,

σ22 =
√

2(−Ae2 + 2Be3

2
− 3Ce5

2
+De1 + 2De1e2x12

− De2
2
x12 − 2De3

2
x2

12
) − kg∇2

ye2 (16)

with coefficients A = (A22(T − Tm))/(2Tm), B = A24/4, C = A26/6, D = A1/2
and E = A3/2.
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We apply the Finite Element Method to solve this problem. All the simulations

have been carried out for Fe-Pd nanowires of 2000 nm in length with varying widths.

The displacements have been set to zero along the length and periodic boundary con-

ditions applied at the two ends. All the simulations are carried out for 5 ms with kg

value 1 × 10−4. The static harmonic elastic constants for Fe-Pd [2] have been taken

as follows: A1 = 140 GPa, A3 = 280 GPa, A22 = 212 GPa, A24 = 17 × 103 GPa,

A26 = 30 × 106 GPa, T = 250 K and Tm = 265 K. The volume change x12 has been

varied in the simulations to study the effect on change of microstructure.

In Fig. 1 we demonstrate the results of coupled modelling of nanowires, where

thermal effects were accounted for consistently. In all the simulations, the austenite

is shown in green and martensite variants in red and blue (color online). It is found

that the martensitic twins are formed in wires of larger widths. At smaller widths,

the martensitic transformation is completely suppressed. The microstructure changes

from twins at larger width to austenite at the smaller width. It can be noted that the

martensitic transformation is completely suppressed below a critical width which in

this particular case is around 92nm.

Figure 1: Microstructures of different width nanowires (length is 2000, volume frac-

tion x12 = 0): (a) 200 nm (b) 95 nm (c) 90 nm (d) 80 nm.

Next, the tensile test (constant displacement) has been carried out on the nanowire

of width 200 nm for the uncoupled case. Fig. 2 shows the stress-strain curve for low

strain rate 0.5 %. Already this case shows that the thermo-mechanical properties of

nanowires may differ substantially from the corresponding properties of the bulk. Fur-

thermore, microstructures at the nanoscale can be highly heterogeneous. At the same

time, it is expected that the structure of such a heterogeneity can be quite important

for nanostructure properties due to the the fact that the interfacial energy at this scale

is comparable with the bulk energy.

5 Conclusion

In this paper we demonstrated the existence of a critical dimension for finite length

nanowires exhibiting shape memory effects. We gave a brief survey of phase trans-
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Figure 2: Stress-strain charcteristics of a nanowire with 2000nm width(for strain rate

of 0.5 %).

formations, their classifications, and provided the basis of mathematical models for

the phenomena involving such transformations, focusing on shape memory effects at

the nanoscale. The results of modelling were discussed for the dynamic of square-to-

rectangular transformations modelled on the basis of the modified Ginzburg-Landau

theory. The results were obtained by solving a fully coupled system of partial dif-

ferential equations, accounting for the thermal field. This new feature of our model

extends recently reported phase-field-based models where thermal field coupling was

neglected. Representative examples of modelling were given for nanowires of dif-

ferent widths demonstrating the importance of geometrical constraints in studying

properties of nanowires.
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