438 research outputs found
Analysis of Photoassociation Spectra for Giant Helium Dimers
We perform a theoretical analysis to interpret the spectra of purely
long-range helium dimers produced by photoassociation (PA) in an ultra-cold gas
of metastable helium atoms. The experimental spectrum obtained with the PA
laser tuned closed to the atomic line has been
reported in a previous Letter. Here, we first focus on the corrections to be
applied to the measured resonance frequencies in order to infer the molecular
binding energies. We then present a calculation of the vibrational spectra for
the purely long-range molecular states, using adiabatic potentials obtained
from perturbation theory. With retardation effects taken into account, the
agreement between experimental and theoretical determinations of the spectrum
for the purely long-range potential well is very good. The results
yield a determination of the lifetime of the atomic state
Transcription factor functionality and transcription regulatory networks
Now that numerous high-quality complete genome sequences are available, many efforts are focusing on the second genomic code , namely the code that determines how the precise temporal and spatial expression of each gene in the genome is achieved. In this regard, the elucidation of transcription regulatory networks that describe combined transcriptional circuits for an organism of interest has become valuable to our understanding of gene expression at a systems level. Such networks describe physical and regulatory interactions between transcription factors (TFs) and the target genes they regulate under different developmental, physiological, or pathological conditions. The mapping of high-quality transcription regulatory networks depends not only on the accuracy of the experimental or computational method chosen, but also relies on the quality of TF predictions. Moreover, the total repertoire of TFs is not only determined by the protein-coding capacity of the genome, but also by different protein properties, including dimerization, co-factor interactions and post-translational modifications. Here, we discuss the factors that influence TF functionality and, hence, the functionality of the networks in which they operate
Giant Helium Dimers Produced by Photoassociation of Ultracold Metastable Atoms
We produce giant helium dimers by photoassociation of metastable helium atoms
in a magnetically trapped, ultracold cloud. The photoassociation laser is
detuned red of the atomic line and produces strong heating
of the sample when resonant with molecular bound states. The temperature of the
cloud serves as an indicator of the molecular spectrum. We report good
agreement between our spectroscopic measurements and our calculations of the
five bound states belonging to a purely long-range potential well.
These previously unobserved states have classical inner turning points of about
150 and outer turning points as large as 1150 .Comment: 4 pages, 4 figure
Rotationally induced Penning ionization of ultracold photoassociated helium dimers
We have studied photoassociation of metastable \tripS helium atoms near the
\tripS-\tripP asymptote by both ion detection in a magneto-optical trap and
trap-loss measurements in a magnetic trap. A detailed comparison between the
results of the two experiments gives insight into the mechanism of the Penning
ionization process. We have identified four series of resonances corresponding
to vibrational molecular levels belonging to different rotational states in two
potentials. The corresponding spin states become quasi-purely quintet at small
interatomic distance, and Penning ionization is inhibited by spin conservation
rules. Only a weak rotational coupling is responsible for the contamination by
singlet spin states leading to a detectable ion signal. However, for one of
these series Bose statistics does not enable the rotational coupling and the
series detected through trap-loss does not give rise to sufficient ionization
for detection.Comment: 7 pages, 4 figures, submitted to EuroPhysics Letter
The Nuclear Sigma Term in the Skyrme Model: Pion-Nucleus Interaction
The nuclear sigma term is calculated including the nuclear matrix element of
the derivative of the NN interaction with respect to the quark mass,
. The NN potential is evaluated in the
skyrmion-skyrmion picture within the quantized product ansatz. The contribution
of the NN potential to the nuclear sigma term provides repulsion to the
pion-nucleus interaction. The strength of the s-wave pion-nucleus optical
potential is estimated including such contribution. The results are consistent
with the analysis of the experimental data.Comment: 16 pages (latex), 3 figures (eps), e-mail: [email protected] and
[email protected]
Zero mode quantization of multi-Skyrmions
A zero mode quantization of the minimal energy SU(2) Skyrmions for nucleon
numbers four to nine and seventeen is described. This involves quantizing the
rotational and isorotational modes of the configurations. For nucleon numbers
four, six and eight the ground states obtained are in agreement with the
observed nuclear states of Helium, Lithium and Beryllium. However, for nucleon
numbers five, seven, nine and seventeen the spins obtained conflict with the
observed isodoublet nuclear states.Comment: 37 pages, LaTeX, 4 figures. More careful treatment of double covers,
reference adde
Recommended from our members
Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns
BACKGROUND: The C. elegans Promoterome is a powerful resource for revealing the regulatory mechanisms by which transcription is controlled pan-genomically. Transcription factors will form the core of any systems biology model of genome control and therefore the promoter activity of Promoterome inserts for C. elegans transcription factor genes was examined, in vivo, with a reporter gene approach. RESULTS: Transgenic C. elegans strains were generated for 366 transcription factor promoter/gfp reporter gene fusions. GFP distributions were determined, and then summarized with reference to developmental stage and cell type. Reliability of these data was demonstrated by comparison to previously described gene product distributions. A detailed consideration of the results for one C. elegans transcription factor gene family, the Six family, comprising ceh-32, ceh-33, ceh-34 and unc-39 illustrates the value of these analyses. The high proportion of Promoterome reporter fusions that drove GFP expression, compared to previous studies, led to the hypothesis that transcription factor genes might be involved in local gene duplication events less frequently than other genes. Comparison of transcription factor genes of C. elegans and Caenorhabditis briggsae was therefore carried out and revealed very few examples of functional gene duplication since the divergence of these species for most, but not all, transcription factor gene families. CONCLUSION: Examining reporter expression patterns for hundreds of promoters informs, and thereby improves, interpretation of this data type. Genes encoding transcription factors involved in intrinsic developmental control processes appear acutely sensitive to changes in gene dosage through local gene duplication, on an evolutionary time scale
Nucleon deformation in finite nuclei
The deformation of a nucleon embedded in various finite nuclei is considered
by taking into account the distortion of the chiral profile functions under the
action of an external field representing the nuclear density. The baryon charge
distribution of the nucleon inside light, medium-heavy and heavy nuclei is
discussed. The mass of the nucleon decreases as it is placed deeper inside the
nucleus and reaches its minimum at the center of the nucleus. We discuss the
quantization of non-spherical solitons and its consequences for the mass
splitting of the delta states. We show that bound nucleons acquire an intrinsic
quadrupole moment due to the deformation effects. These effects are maximal for
densities of nuclei about \rho(R)\sim 0.3...0.35 \rho(0). We also point out
that scale changes of the electromagnetic radii can not simply be described by
an overall swelling factor.Comment: 29 pp, REVTeX, 8 figures, more detailed discussion on quantization
and intrinsic quadrupole moments, references adde
A single hollow beam optical trap for cold atoms
We present an optical trap for atoms that we have developed for precision
spectroscopy measurements. Cold atoms are captured in a dark region of space
inside a blue-detuned hollow laser beam formed by an axicon. We analyze the
light potential in a ray optics picture and experimentally demonstrate trapping
of laser-cooled metastable xenon atoms.Comment: 12 pages, 8 figure
- …