65 research outputs found

    Maternal Malaria Induces a Procoagulant and Antifibrinolytic State That Is Embryotoxic but Responsive to Anticoagulant Therapy

    Get PDF
    Low birth weight and fetal loss are commonly attributed to malaria in endemic areas, but the cellular and molecular mechanisms that underlie these poor birth outcomes are incompletely understood. Increasing evidence suggests that dysregulated hemostasis is important in malaria pathogenesis, but its role in placental malaria (PM), characterized by intervillous sequestration of Plasmodium falciparum, proinflammatory responses, and excessive fibrin deposition is not known. To address this question, markers of coagulation and fibrinolysis were assessed in placentae from malaria-exposed primigravid women. PM was associated with significantly elevated placental monocyte and proinflammatory marker levels, enhanced perivillous fibrin deposition, and increased markers of activated coagulation and suppressed fibrinolysis in placental plasma. Submicroscopic PM was not proinflammatory but tended to be procoagulant and antifibrinolytic. Birth weight trended downward in association with placental parasitemia and high fibrin score. To directly assess the importance of coagulation in malaria-induced compromise of pregnancy, Plasmodium chabaudi AS-infected pregnant C57BL/6 mice were treated with the anticoagulant, low molecular weight heparin. Treatment rescued pregnancy at midgestation, with substantially decreased rates of active abortion and reduced placental and embryonic hemorrhage and necrosis relative to untreated animals. Together, the results suggest that dysregulated hemostasis may represent a novel therapeutic target in malaria-compromised pregnancies

    Global variation in anastomosis and end colostomy formation following left-sided colorectal resection

    Get PDF
    Background End colostomy rates following colorectal resection vary across institutions in high-income settings, being influenced by patient, disease, surgeon and system factors. This study aimed to assess global variation in end colostomy rates after left-sided colorectal resection. Methods This study comprised an analysis of GlobalSurg-1 and -2 international, prospective, observational cohort studies (2014, 2016), including consecutive adult patients undergoing elective or emergency left-sided colorectal resection within discrete 2-week windows. Countries were grouped into high-, middle- and low-income tertiles according to the United Nations Human Development Index (HDI). Factors associated with colostomy formation versus primary anastomosis were explored using a multilevel, multivariable logistic regression model. Results In total, 1635 patients from 242 hospitals in 57 countries undergoing left-sided colorectal resection were included: 113 (6·9 per cent) from low-HDI, 254 (15·5 per cent) from middle-HDI and 1268 (77·6 per cent) from high-HDI countries. There was a higher proportion of patients with perforated disease (57·5, 40·9 and 35·4 per cent; P < 0·001) and subsequent use of end colostomy (52·2, 24·8 and 18·9 per cent; P < 0·001) in low- compared with middle- and high-HDI settings. The association with colostomy use in low-HDI settings persisted (odds ratio (OR) 3·20, 95 per cent c.i. 1·35 to 7·57; P = 0·008) after risk adjustment for malignant disease (OR 2·34, 1·65 to 3·32; P < 0·001), emergency surgery (OR 4·08, 2·73 to 6·10; P < 0·001), time to operation at least 48 h (OR 1·99, 1·28 to 3·09; P = 0·002) and disease perforation (OR 4·00, 2·81 to 5·69; P < 0·001). Conclusion Global differences existed in the proportion of patients receiving end stomas after left-sided colorectal resection based on income, which went beyond case mix alone

    Kynurenine pathway enzymes in guinea pigs

    No full text
    In some animals, the administration of repeated doses of tryptophan can cause death. It has been reported that guinea pig does not survive repeated doses of tryptophan, due to the absence of the hormonal induction mechanism of liver tryptophan 2,3-dioxygenase (TDO). Therefore, it was of interest to investigate if guinea pig is an animal model suitable for studying tryptophan metabolism. The activities of the enzymes of the kynurenine pathway were determined. Liver TDO was present only as a holoenzyme; kynurenine 3-monooxygenase showed similar, but very high, activity in both liver and kidney. Liver and kidney kynureninase values were also similar, whereas kynurenine-oxoglutarate transaminase activity was higher in kidney than in liver. 3-Hydroxyanthranilate 3,4-dioxygenase gave similar, but very high, values in both liver and kidney, whereas aminocarboxymuconate-semialdehyde decarboxylase activity was double in kidney with respect to liver, but much lower than that of 3-hydroxyanthranilate 3,4-dioxygenase. Total and free tryptophan concentrations in serum were also determined. The free fraction was about 10% of total tryptophan
    corecore