547 research outputs found

    Molecular dynamics modelling of radiation damage in normal, partly inverse and inverse spinels

    Get PDF
    The radiation response of perfect crystals of MgAl2O4, partially inverted MgGa2O4 and fully inverse MgIn2O4 were investigated using molecular dynamics. Dynamical cascades were initiated in these spinels over a range of trajectories with energies of 400 eV and 2 keV for the primary knock-on event. Collision cascades were set up on each of the cation and anion sublattices and were monitored up to 10 ps. Simulations in the normal MgAl2O4 spinel for the 2 keV energy regime resulted in similar defect structures as obtained at the post-threshold 400 eV energies, with little clustering occurring. The predominant defect configurations were split interstitials and cation antisites. For the inverse spinels, a much wider variety of lattice imperfections was observed. More defects were also produced due to the formation of interstitialvacancy cation chains and oxygen crowdions

    Self-consistent solution of the Schwinger-Dyson equations for the nucleon and meson propagators

    Full text link
    The Schwinger-Dyson equations for the nucleon and meson propagators are solved self-consistently in an approximation that goes beyond the Hartree-Fock approximation. The traditional approach consists in solving the nucleon Schwinger-Dyson equation with bare meson propagators and bare meson-nucleon vertices; the corrections to the meson propagators are calculated using the bare nucleon propagator and bare nucleon-meson vertices. It is known that such an approximation scheme produces the appearance of ghost poles in the propagators. In this paper the coupled system of Schwinger-Dyson equations for the nucleon and the meson propagators are solved self-consistently including vertex corrections. The interplay of self-consistency and vertex corrections on the ghosts problem is investigated. It is found that the self-consistency does not affect significantly the spectral properties of the propagators. In particular, it does not affect the appearance of the ghost poles in the propagators.Comment: REVTEX, 7 figures (available upon request), IFT-P.037/93, DOE/ER/40427-12-N9

    A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project

    Get PDF
    A method to facilitate the consistent inclusion of cross-section measurements based on complex final-states from HERA, TEVATRON and the LHC in proton parton density function (PDF) fits has been developed. This can be used to increase the sensitivity of LHC data to deviations from Standard Model predictions. The method stores perturbative coefficients of NLO QCD calculations of final-state observables measured in hadron colliders in look-up tables. This allows the posteriori inclusion of parton density functions (PDFs), and of the strong coupling, as well as the a posteriori variation of the renormalisation and factorisation scales in cross-section calculations. The main novelties in comparison to original work on the subject are the use of higher-order interpolation, which substantially improves the trade-off between accuracy and memory use, and a CPU and computer memory optimised way to construct and store the look-up table using modern software tools. It is demonstrated that a sufficient accuracy on the cross-section calculation can be achieved with reasonably small look-up table size by using the examples of jet production and electro-weak boson (Z, W) production in proton-proton collisions at a center-of-mass energy of 14 TeV at the LHC. The use of this technique in PDF fitting is demonstrated in a PDF-fit to HERA data and simulated LHC jet cross-sections as well as in a study of the jet cross-section uncertainties at various centre-of-mass energies

    An epitaxial model for heterogeneous nucleation on potent substrates

    Get PDF
    © The Minerals, Metals & Materials Society and ASM International 2012In this article, we present an epitaxial model for heterogeneous nucleation on potent substrates. It is proposed that heterogeneous nucleation of the solid phase (S) on a potent substrate (N) occurs by epitaxial growth of a pseudomorphic solid (PS) layer on the substrate surface under a critical undercooling (ΔT ). The PS layer with a coherent PS/N interface mimics the atomic arrangement of the substrate, giving rise to a linear increase of misfit strain energy with layer thickness. At a critical thickness (h ), elastic strain energy reaches a critical level, at which point, misfit dislocations are created to release the elastic strain energy in the PS layer. This converts the strained PS layer to a strainless solid (S), and changes the initial coherent PS/N interface into a semicoherent S/N interface. Beyond this critical thickness, further growth will be strainless, and solidification enters the growth stage. It is shown analytically that the lattice misfit (f) between the solid and the substrate has a strong influence on both h and ΔT ; h decreases; and ΔT increases with increasing lattice misfit. This epitaxial nucleation model will be used to explain qualitatively the generally accepted experimental findings on grain refinement in the literature and to analyze the general approaches to effective grain refinement.EPSRC Centre for Innovative Manufacturing in Liquid Metal Engineerin

    Hadronic final states in deep-inelastic scattering with Sherpa

    Full text link
    We extend the multi-purpose Monte-Carlo event generator Sherpa to include processes in deeply inelastic lepton-nucleon scattering. Hadronic final states in this kinematical setting are characterised by the presence of multiple kinematical scales, which were up to now accounted for only by specific resummations in individual kinematical regions. Using an extension of the recently introduced method for merging truncated parton showers with higher-order tree-level matrix elements, it is possible to obtain predictions which are reliable in all kinematical limits. Different hadronic final states, defined by jets or individual hadrons, in deep-inelastic scattering are analysed and the corresponding results are compared to HERA data. The various sources of theoretical uncertainties of the approach are discussed and quantified. The extension to deeply inelastic processes provides the opportunity to validate the merging of matrix elements and parton showers in multi-scale kinematics inaccessible in other collider environments. It also allows to use HERA data on hadronic final states in the tuning of hadronisation models.Comment: 32 pages, 22 figure

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+π−D^{+}\pi^{-} and D∗+π−D^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 2421−2−2+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 20−5−3+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2∗(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 28−7−6+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Search for Neutral Higgs Bosons of the Minimal Supersymmetric Standard Model in e+e- Interactions at \sqrt{s} = 189 GeV

    Full text link
    A search for the lightest neutral scalar and neutral pseudoscalar Higgs bosons in the Minimal Supersymmetric Standard Model is performed using 176.4 pb^-1 of integrated luminosity collected by L3 at a center-of-mass energy of 189 GeV. No signal is observed, and the data are consistent with the expected Standard Model background. Lower limits on the masses of the lightest neutral scalar and pseudoscalar Higgs bosons are given as a function of tan(beta). Lower mass limits for tan(beta)>1 are set at the 95% confidence level to be m_h > 77.1 GeV and m_A > 77.1 GeV

    Search for Extra Dimensions in Boson and Fermion Pair Production in e+e- Interactions at LEP

    Get PDF
    Extra spatial dimensions are proposed by recent theories that postulate the scale of gravity to be of the same order as the electroweak scale. A sizeable interaction between gravitons and Standard Model particles is then predicted. Effects of these new interactions in boson and fermion pair production are searched for in the data sample collected at centre-of-mass energies above the Z pole by the L3 detector at LEP. In addition, the direct production of a graviton associated with a Z boson is investigated. No statistically significant hints for the existence of these effects are found and lower limits in excess of 1 TeV are derived on the scale of this new theory of gravity

    Measurement of the Probability of Gluon Splitting into Charmed Quarks in Hadronic Z Decays

    Get PDF
    We have measured the probability, n(g->cc~), of a gluon splitting into a charm-quark pair using 1.7 million hadronic Z decays collected by the L3 detector. Two independent methods have been applied to events with a three-jet topology. One method relies on tagging charmed hadrons by identifying a lepton in the lowest energy jet. The other method uses a neural network based on global event shape parameters. Combining both methods, we measure n(g->cc~)= [2.45 +/- 0.29 +/- 0.53]%

    Measurement of Triple-Gauge-Boson Couplings of the W Boson at LEP

    Get PDF
    We report on measurements of the triple-gauge-boson couplings of the W boson in e+e- collisions with the L3 detector at LEP. W-pair, single-W and single-photon events are analysed in a data sample corresponding to a total luminosity of 76.7 pb^{-1} collected at centre-of-mass energies between 161 GeV and 183 GeV. CP-conserving as well as both C- and P-conserving triple-gauge-boson couplings are determined. The results, in good agreement with the Standard-Model expectations, confirm the existence of the self coupling among the electroweak gauge bosons and constrain its structure
    • 

    corecore