58 research outputs found

    CRITERIA FOR RODENT BAIT SELECTION

    Get PDF
    World food shortages become more acute each year, and all too often, rodents are present to take their unwarranted share. To counter this, we must refine our rodent control methods to make them more efficient. To this end, correct bait selection is essential. Grain baits must be selected for purity and acceptability. Grain alterations must be carefully controlled, as well as any additives. Multi-ingredient or composition baits must be checked for size, hardness, protein content and additives. The selection of trap baits is critical for the success of trapping program. In general, fresh coconut is the best bait, but on-site local baits must be checked

    Nanoelectromechanics of Piezoresponse Force Microscopy

    Full text link
    To achieve quantitative interpretation of Piezoresponse Force Microscopy (PFM), including resolution limits, tip bias- and strain-induced phenomena and spectroscopy, analytical representations for tip-induced electroelastic fields inside the material are derived for the cases of weak and strong indentation. In the weak indentation case, electrostatic field distribution is calculated using image charge model. In the strong indentation case, the solution of the coupled electroelastic problem for piezoelectric indentation is used to obtain the electric field and strain distribution in the ferroelectric material. This establishes a complete continuum mechanics description of the PFM contact mechanics and imaging mechanism. The electroelastic field distribution allows signal generation volume in PFM to be determined. These rigorous solutions are compared with the electrostatic point charge and sphere-plane models, and the applicability limits for asymptotic point charge and point force models are established. The implications of these results for ferroelectric polarization switching processes are analyzed.Comment: 81 pages, 19 figures, to be published in Phys. Rev.

    On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree

    Get PDF
    In our recent works [R. Szmytkowski, J. Phys. A 39 (2006) 15147; corrigendum: 40 (2007) 7819; addendum: 40 (2007) 14887], we have investigated the derivative of the Legendre function of the first kind, Pν(z)P_{\nu}(z), with respect to its degree ν\nu. In the present work, we extend these studies and construct several representations of the derivative of the associated Legendre function of the first kind, Pν±m(z)P_{\nu}^{\pm m}(z), with respect to the degree ν\nu, for mNm\in\mathbb{N}. At first, we establish several contour-integral representations of Pν±m(z)/ν\partial P_{\nu}^{\pm m}(z)/\partial\nu. They are then used to derive Rodrigues-type formulas for [Pν±m(z)/ν]ν=n[\partial P_{\nu}^{\pm m}(z)/\partial\nu]_{\nu=n} with nNn\in\mathbb{N}. Next, some closed-form expressions for [Pν±m(z)/ν]ν=n[\partial P_{\nu}^{\pm m}(z)/\partial\nu]_{\nu=n} are obtained. These results are applied to find several representations, both explicit and of the Rodrigues type, for the associated Legendre function of the second kind of integer degree and order, Qn±m(z)Q_{n}^{\pm m}(z); the explicit representations are suitable for use for numerical purposes in various regions of the complex zz-plane. Finally, the derivatives [2Pνm(z)/ν2]ν=n[\partial^{2}P_{\nu}^{m}(z)/\partial\nu^{2}]_{\nu=n}, [Qνm(z)/ν]ν=n[\partial Q_{\nu}^{m}(z)/\partial\nu]_{\nu=n} and [Qνm(z)/ν]ν=n1[\partial Q_{\nu}^{m}(z)/\partial\nu]_{\nu=-n-1}, all with m>nm>n, are evaluated in terms of [Pνm(±z)/ν]ν=n[\partial P_{\nu}^{-m}(\pm z)/\partial\nu]_{\nu=n}.Comment: LateX, 40 pages, 1 figure, extensive referencin

    Plasmonic atoms and plasmonic molecules

    Get PDF
    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for a construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.Comment: 30 pages, 16 figure

    Measurement of the Neutron Spin Structure Function g1ng_1^n with a Polarized ^3He Target

    Get PDF
    Results are reported from the HERMES experiment at HERA on a measurement of the neutron spin structure function g1n(x,Q2)g_1^n(x,Q^2) in deep inelastic scattering using 27.5 GeV longitudinally polarized positrons incident on a polarized 3^3He internal gas target. The data cover the kinematic range 0.023<x<0.60.023<x<0.6 and 1(GeV/c)2<Q2<15(GeV/c)21 (GeV/c)^2 < Q^2 <15 (GeV/c)^2. The integral 0.0230.6g1n(x)dx\int_{0.023}^{0.6} g_1^n(x) dx evaluated at a fixed Q2Q^2 of 2.5(GeV/c)22.5 (GeV/c)^2 is 0.034±0.013(stat.)±0.005(syst.)-0.034\pm 0.013(stat.)\pm 0.005(syst.). Assuming Regge behavior at low xx, the first moment Γ1n=01g1n(x)dx\Gamma_1^n=\int_0^1 g_1^n(x) dx is 0.037±0.013(stat.)±0.005(syst.)±0.006(extrapol.)-0.037\pm 0.013(stat.)\pm 0.005(syst.)\pm 0.006(extrapol.).Comment: 4 pages TEX, text available at http://www.krl.caltech.edu/preprints/OAP.htm

    Flavor Decomposition of the Polarized Quark Distributions in the Nucleon from Inclusive and Semi-inclusive Deep-inelastic Scattering

    Full text link
    Spin asymmetries of semi-inclusive cross sections for the production of positively and negatively charged hadrons have been measured in deep-inelastic scattering of polarized positrons on polarized hydrogen and 3He targets, in the kinematic range 0.023<x<0.6 and 1 GeV^2<Q^2<10 GeV^2. Polarized quark distributions are extracted as a function of x for up $(u+u_bar) and down (d+d_bar) flavors. The up quark polarization is positive and the down quark polarization is negative in the measured range. The polarization of the sea is compatible with zero. The first moments of the polarized quark distributions are presented. The isospin non-singlet combination Delta_q_3 is consistent with the prediction based on the Bjorken sum rule. The moments of the polarized quark distributions are compared to predictions based on SU(3)_f flavor symmetry and to a prediction from lattice QCD.Comment: 14 pages, 6 figures (eps format), 10 tables in Latex New version contains tables of asymmetries and correlation matri

    The HERMES Spectrometer

    Get PDF
    The HERMES experiment is collecting data on inclusive and semi-inclusive deep inelastic scattering of polarised positrons from polarised targets of Il, D, and He-3. These data give information on the spin structure of the nucleon. This paper describes the forward angle spectrometer built for this purpose. The spectrometer includes numerous tracking chambers (micro-strip gas chambers, drift and proportional chambers) in front of and behind a 1.3 T.m magnetic field, as well as an extensive set of detectors for particle identification (a lead-glass calorimeter, a pre-shower detector, a transition radiation detector, and a threshold Cherenkov detector). Two of the main features of the spectrometer are its good acceptance and identification of both positrons and hadrons, in particular pions. These characteristics, together with the purity of the targets, are allowing HERMES to make unique contributions to the understanding of how the spins of the quarks contribute to the spin of the nucleon. (C) 1998 Elsevier Science B.V. All rights reserved
    corecore