25 research outputs found

    Decoherence and Initial Correlations in Quantum Brownian Motion

    Full text link
    We analyze the evolution of a quantum Brownian particle starting from an initial state that contains correlations between this system and its environment. Using a path integral approach, we obtain a master equation for the reduced density matrix of the system finding relatively simple expressions for its time dependent coefficients. We examine the evolution of delocalized initial states (Schr\"odinger's cats) investigating the effectiveness of the decoherence process. Analytic results are obtained for an ohmic environment (Drude's model) at zero temperature.Comment: 15 pages, RevTex, 5 figures included. Submitted to Phys. Rev.

    An ALMA survey of CO in submillimetre galaxies: companions, triggering, and the environment in blended sources

    Get PDF
    We present ALMA observations of the mid-J 12CO emission from six single-dish selected 870-μm sources in the Extended Chandra Deep Field-South and UKIDSS Ultra-Deep Survey fields. These six single-dish submillimetre sources were selected based on previous ALMA continuum observations, which showed that each comprised a blend of emission from two or more individual submillimetre galaxies (SMGs), separated on 5–10 arcsec scales. The six single-dish submillimetre sources targeted correspond to a total of 14 individual SMGs, of which seven have previously measured robust optical/near-infrared spectroscopic redshifts, which were used to tune our ALMA observations. We detect CO(3–2) or CO(4–3) at z = 2.3–3.7 in 7 of the 14 SMGs, and in addition serendipitously detect line emission from three gas-rich companion galaxies, as well as identify four new 3.3 mm selected continuum sources in the six fields. Joint analysis of our CO spectroscopy and existing data suggests that 64(±18)percent of the SMGs in blended submillimetre sources are unlikely to be physically associated. However, three of the SMG fields (50 per cent) contain new, serendipitously detected CO-emitting (but submillimetre-faint) sources at similar redshifts to the 870 μm selected SMGs we targeted. These data suggest that the SMGs inhabit overdense regions, but that these are not sufficiently overdense on ∼100 kpc scales to influence the source blending given the short lifetimes of SMGs. We find that 21±12percent of SMGs have spatially distinct and kinematically close companion galaxies (∼8–150 kpc and ≲ 300 km s−1), which may have enhanced their star formation via gravitational interactions

    Resolving the ISM at the Peak of Cosmic Star Formation with ALMA: The Distribution of CO and Dust Continuum in z ∼ 2.5 Submillimeter Galaxies

    Get PDF
    We use Atacama Large Millimeter Array (ALMA) observations of four submillimeter galaxies (SMGs) at z ~ 2–3 to investigate the spatially resolved properties of the interstellar medium (ISM) at scales of 1–5 kpc (0farcs1–0farcs6). The velocity fields of our sources, traced by the 12CO(J = 3–2) emission, are consistent with disk rotation to the first order, implying average dynamical masses of ~3 × 1011 M⊙{M}_{\odot } within two half-light radii. Through a Bayesian approach we investigate the uncertainties inherent to dynamically constraining total gas masses. We explore the covariance between the stellar mass-to-light ratio and CO-to-H2 conversion factor, α CO, finding values of αCO=1.1−0.7+0.8{\alpha }_{\mathrm{CO}}={1.1}_{-0.7}^{+0.8} for dark matter fractions of 15%. We show that the resolved spatial distribution of the gas and dust continuum can be uncorrelated to the stellar emission, challenging energy balance assumptions in global SED fitting. Through a stacking analysis of the resolved radial profiles of the CO(3–2), stellar, and dust continuum emission in SMG samples, we find that the cool molecular gas emission in these sources (radii ~5–14 kpc) is clearly more extended than the rest-frame ~250 μm dust continuum by a factor >2. We propose that assuming a constant dust-to-gas ratio, this apparent difference in sizes can be explained by temperature and optical depth gradients alone. Our results suggest that caution must be exercised when extrapolating morphological properties of dust continuum observations to conclusions about the molecular gas phase of the interstellar medium (ISM)

    A Spatially Resolved Study of Cold Dust, Molecular Gas, H ii Regions, and Stars in the z = 2.12 Submillimeter Galaxy ALESS67.1

    Get PDF
    We present detailed studies of a z = 2.12 submillimeter galaxy, ALESS67.1, using sub-arcsecond resolution ALMA, adaptive optics-aided VLT/SINFONI, and Hubble Space Telescope (HST)/CANDELS data to investigate the kinematics and spatial distributions of dust emission (870 μm continuum), 12CO(J = 3–2), strong optical emission lines, and visible stars. Dynamical modeling of the optical emission lines suggests that ALESS67.1 is not a pure rotating disk but a merger, consistent with the apparent tidal features revealed in the HST imaging. Our sub-arcsecond resolution data set allows us to measure half-light radii for all the tracers, and we find a factor of 4–6 smaller sizes in dust continuum compared to all the other tracers, including 12CO; also, ultraviolet (UV) and Hα emission are significantly offset from the dust continuum. The spatial mismatch between the UV continuum and the cold dust and gas reservoir supports the explanation that geometrical effects are responsible for the offset of the dusty galaxy on the IRX–β diagram. Using a dynamical method we derive an αCO=1.8±1.0{\alpha }_{\mathrm{CO}}=1.8\pm 1.0, consistent with other submillimeter galaxies (SMGs) that also have resolved CO and dust measurements. Assuming a single αCO{\alpha }_{\mathrm{CO}} value we also derive resolved gas and star formation rate surface densities, and find that the core region of the galaxy (≲5\lesssim 5 kpc) follows the trend of mergers on the Schmidt–Kennicutt relationship, whereas the outskirts (≳5\gtrsim 5 kpc) lie on the locus of normal star-forming galaxies, suggesting different star formation efficiencies within one galaxy. Our results caution against using single size or morphology for different tracers of the star formation activity and gas content of galaxies, and therefore argue the need to use spatially resolved, multi-wavelength observations to interpret the properties of SMGs, and perhaps even for z>1z\gt 1 galaxies in general

    Two new species of Inonotus from Taiwan

    No full text

    Two new species of Phellinus from Taiwan

    No full text
    corecore