42 research outputs found

    A model of strongly biased chemotaxis reveals the trade-offs of different bacterial migration strategies

    Get PDF
    Many bacteria actively bias their motility towards more favourable nutrient environments. In liquid, cells rotate their corkscrew-shaped flagella to swim, but in surface attached biofilms cells instead use grappling hook-like appendages called pili to pull themselves along. In both forms of motility, cells selectively alternate between relatively straight ‘runs’ and sharp reorientations to generate biased random walks up chemoattractant gradients. However, recent experiments suggest that swimming and biofilm cells employ fundamentally different strategies to generate chemotaxis: swimming cells typically suppress reorientations when moving up a chemoattractant gradient, whereas biofilm cells increase reorientations when moving down a chemoattractant gradient. The reason for this difference remains unknown. Here we develop a mathematical framework to understand how these different chemotactic strategies affect the distribution of cells at the population level. Current continuum models typically assume a weak bias in the reorientation rate and are not able to distinguish between these two strategies, so we derive a model for strong chemotaxis that resolves how both the drift and diffusive components depend on the underlying chemotactic strategy. We then test predictions from our continuum model against individual-based simulations and identify further refinements that allow our continuum model to resolve boundary effects. Our analyses reveal that the strategy employed by swimming cells yields a larger chemotactic drift, but the strategy used by biofilm cells allows them to more tightly aggregate where the chemoattractant is most abundant. This new modelling framework provides new quantitative insights into how the different chemical landscapes experienced by swimming and biofilm cells might select for divergent ways of generating chemotaxis

    Chain formation can enhance the vertical migration of phytoplankton through turbulence

    Get PDF
    Many species of motile phytoplankton can actively form long multicellular chains by remaining attached to one another after cell division. While chains swim more rapidly than single cells of the same species, chain formation also dramatically reduces phytoplankton’s ability to maintain their bearing. This suggests that turbulence, which acts to randomize swimming direction, could sharply attenuate a chain’s ability to migrate between well-lit surface waters during the day and deeper nutrient rich waters at night. Here we use numerical models to investigate how chain formation affects the migration of phytoplankton through a turbulent water column. Unexpectedly, we find that the elongated shape of chains helps them travel through weak to moderate turbulence much more effectively than single cells and isolate the physical processes that confer chains this ability. Our findings provide a new mechanistic understanding of how turbulence can select for phytoplankton with elongated morphologies and may help explain why turbulence triggers chain formation

    Tracking bacteria at high density with FAST, the Feature-Assisted Segmenter/Tracker

    Get PDF
    Most bacteria live attached to surfaces in densely-packed communities. While new experimental and imaging techniques are beginning to provide a window on the complex processes that play out in these communities, resolving the behaviour of individual cells through time and space remains a major challenge. Although a number of different software solutions have been developed to track microorganisms, these typically require users either to tune a large number of parameters or to groundtruth a large volume of imaging data to train a deep learning model—both manual processes which can be very time consuming for novel experiments. To overcome these limitations, we have developed FAST, the Feature-Assisted Segmenter/Tracker, which uses unsupervised machine learning to optimise tracking while maintaining ease of use. Our approach, rooted in information theory, largely eliminates the need for users to iteratively adjust parameters manually and make qualitative assessments of the resulting cell trajectories. Instead, FAST measures multiple distinguishing ‘features’ for each cell and then autonomously quantifies the amount of unique information each feature provides. We then use these measurements to determine how data from different features should be combined to minimize tracking errors. Comparing our algorithm with a naïve approach that uses cell position alone revealed that FAST produced 4 to 10 fold fewer tracking errors. The modular design of FAST combines our novel tracking method with tools for segmentation, extensive data visualisation, lineage assignment, and manual track correction. It is also highly extensible, allowing users to extract custom information from images and seamlessly integrate it into downstream analyses. FAST therefore enables high-throughput, data-rich analyses with minimal user input. It has been released for use either in Matlab or as a compiled stand-alone application, and is available at https://bit.ly/3vovDHn, along with extensive tutorials and detailed documentation

    Microbial competition in porous environments can select against rapid biofilm growth

    Get PDF
    Microbes often live in dense communities called biofilms where competition between strains and species is fundamental to both evolution and community function. While biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here we use novel microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates we couple a model of flow-biofilm interaction with a game theory analysis. This shows that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live

    Bacteria solve the problem of crowding by moving slowly

    Get PDF
    Bacteria commonly live attached to surfaces in dense collectives containing billions of cells1. While it is known that motility allows these groups to expand en masse into new territory2,3,4,5, how bacteria collectively move across surfaces under such tightly packed conditions remains poorly understood. Here we combine experiments, cell tracking and individual-based modelling to study the pathogen Pseudomonas aeruginosa as it collectively migrates across surfaces using grappling-hook-like pili3,6,7. We show that the fast-moving cells of a hyperpilated mutant are overtaken and outcompeted by the slower-moving wild type at high cell densities. Using theory developed to study liquid crystals8,9,10,11,12,13, we demonstrate that this effect is mediated by the physics of topological defects, points where cells with different orientations meet one another. Our analyses reveal that when defects with topological charge +1/2 collide with one another, the fast-moving mutant cells rotate to point vertically and become trapped. By moving more slowly, wild-type cells avoid this trapping mechanism and generate collective behaviour that results in faster migration. In this way, the physics of liquid crystals explains how slow bacteria can outcompete faster cells in the race for new territory

    Reconfigurable microfluidic circuits for isolating and retrieving cells of interest

    Get PDF
    Microfluidic devices are widely used in many fields of biology, but a key limitation is that cells are typically surrounded by solid walls, making it hard to access those that exhibit a specific phenotype for further study. Here, we provide a general and flexible solution to this problem that exploits the remarkable properties of microfluidic circuits with fluid walls─transparent interfaces between culture media and an immiscible fluorocarbon that are easily pierced with pipets. We provide two proofs of concept in which specific cell subpopulations are isolated and recovered: (i) murine macrophages chemotaxing toward complement component 5a and (ii) bacteria (Pseudomonas aeruginosa) in developing biofilms that migrate toward antibiotics. We build circuits in minutes on standard Petri dishes, add cells, pump in laminar streams so molecular diffusion creates attractant gradients, acquire time-lapse images, and isolate desired subpopulations in real time by building fluid walls around migrating cells with an accuracy of tens of micrometers using 3D printed adaptors that convert conventional microscopes into wall-building machines. Our method allows live cells of interest to be easily extracted from microfluidic devices for downstream analyses

    Periodic and Quasiperiodic Motion of an Elongated Microswimmer in Poiseuille Flow

    Full text link
    We study the dynamics of a prolate spheroidal microswimmer in Poiseuille flow for different flow geometries. When moving between two parallel plates or in a cylindrical microchannel, the swimmer performs either periodic swinging or periodic tumbling motion. Although the trajectories of spherical and elongated swimmers are qualitatively similar, the swinging and tumbling frequency strongly depends on the aspect ratio of the swimmer. In channels with reduced symmetry the swimmers perform quasiperiodic motion which we demonstrate explicitely for swimming in a channel with elliptical cross section

    Population dynamics in compressible flows

    Full text link
    Organisms often grow, migrate and compete in liquid environments, as well as on solid surfaces. However, relatively little is known about what happens when competing species are mixed and compressed by fluid turbulence. In these lectures we review our recent work on population dynamics and population genetics in compressible velocity fields of one and two dimensions. We discuss why compressible turbulence is relevant for population dynamics in the ocean and we consider cases both where the velocity field is turbulent and when it is static. Furthermore, we investigate populations in terms of a continuos density field and when the populations are treated via discrete particles. In the last case we focus on the competition and fixation of one species compared to anotherComment: 16 pages, talk delivered at the Geilo Winter School 201
    corecore