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Many bacteria actively bias their motility towards more favourable nutrient environments. In liquid, cells

rotate their corkscrew shaped flagella to swim, but in surface attached biofilms cells instead use grappling

hook like appendages called pili to pull themselves along. In both forms of motility cells selectively

alternate between relatively straight ‘runs’ and sharp reorientations to generate biased random walks up

chemoattractant gradients. However, recent experiments suggest that swimming and biofilm cells employ

fundamentally different strategies to generate chemotaxis: swimming cells typically suppress reorienta-

tions when moving up a chemoattractant gradient, whereas biofilm cells increase reorientations when

moving down a chemoattractant gradient. The reason for this difference remains unknown. Here we

develop a mathematical framework to understand how these different chemotactic strategies affect the

distribution of cells at the population level. Current continuum models typically assume a weak bias in

the reorientation rate and are not able to distinguish between these two strategies, so we derive a model

for strong chemotaxis which resolves how both the drift and diffusive components depend on the under-

lying chemotactic strategy. We then test predictions from our continuum model against individual-based

simulations, and identify further refinements that allow our continuum model to resolve boundary effects.

Our analyses reveal that the strategy employed by swimming cells yields a larger chemotactic drift, but

the strategy used by biofilm cells allows them to more tightly aggregate where the chemoattractant is

most abundant. This new modelling framework provides new quantitative insights into how the different

chemical landscapes experienced by swimming and biofilm cells might select for divergent ways of gen-

erating chemotaxis.

Keywords: bacteria; chemotaxis; biofilms; PDEs; stochastic simulations

1. Introduction

Bacteria are among the most primitive forms of life. Yet, despite their relative simplicity and small size

(≈ 1 to 100µm), bacteria can actively sense a remarkable diversity of different environmental signals,

including light, temperature, pH, oxygen, nutrients, and toxins, and use this information to direct their

motility towards more favourable environments. While not all bacterial species are motile, bacterial

motility plays a vital role in many processes in both nature and medicine. For example, bacteria’s abil-

ity to bias their movement along chemical gradients increases the productivity of the marine ecosystems

(Smirga et al., 2016), enhances the degradation of pollutants (Pandey & Jain, 2002), and localises poten-

tially fatal cholera infections to a certain part of the gut (Butler & Camili, 2005). This process, known

as chemotaxis, is widely studied and the enteric bacteria Escherichia coli serves as a model system in

c© The author ***. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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the study of bacterial chemotaxis. Over the last four decades tremendous progress has been made in

characterising the underlying biophysical processes that E. coli cells use to navigate chemical gradients,

from how the different proteins in the signal transduction pathway function (Berg, 2004; Wadhams &

Armitage, 2004), to how its multiple flagella interact hydrodynamically (Kim et al., 2003), to how their

biased random walks affect cell distributions at the population level (Alt, 1980; Rivero et al., 1989;

Hillen & Othmer, 2000; Erban & Othmer, 2005; Othmer & Xue, 2013; Thygesen, 2016; Xue & Yang,

2016).

Swimming bacteria like E. coli navigate along gradients by regulating the rotation direction of their

corkscrew-like flagella. When they rotate their flagella in one direction the flagella bundle together

to move the cell forward in a relatively straight ‘run’, but when one of the flagella turns the opposite

direction the bundle flies apart causing the cell to ‘tumble’ and sharply change direction. In the absence

of external stimuli, E. coli cells tumble randomly in time, with a mean duration between successive

tumbles of approximately one second. In the presence of a chemical gradient, cells use a finely-tuned

chemosensory system to measure changes in the concentration of chemical over time and when a cell

senses it is moving up a gradient of nutrient it extends runs. However, when it senses it is traveling

down a nutrient gradient it simply reverts back to the basal tumbling rate that it exhibits in the absence of

chemical gradients (Berg & Brown, 1972). In this way, E. coli is said to have an ‘optimistic’ chemotactic

strategy: if conditions are getting better it keeps going, but if conditions get worse it does nothing

(Berg & Brown, 1972; Berg, 2004). While Brownian rotational diffusion randomizes a cell’s swimming

direction and prevents it from swimming directly up a gradient, this optimistic strategy allows a cell to

perform a biased random walk towards more favourable nutrient environments.

The majority of bacteria, however, live in surface attached biofilms where flagella are largely in-

effective at driving movement (Costerton et al., 1995). Instead, in these environments bacteria pull

themselves across surfaces using grappling hook type appendages known as Type IV pili (Skerker &

Berg, 2001). While E. coli lacks these pili, it was recently demonstrated that Pseudomonas aeruginosa,

a pathogenic bacteria species widely used as a model of biofilm formation, can perform chemotaxis

while attached to surfaces (Oliveira et al., 2016). By following the movement of thousands of attached

P. aeruginosa within microfluidic devices, it was shown that these rod-shaped bacteria can actively

sense their chemical environment and use this information to selectively reverse direction by pulling

themselves from their opposite pole. It was found that cells moving up a gradient reverse direction at

the same rate as those in the absence of a gradient, but cells that move down the gradient reverse di-

rection more frequently. Thus, these biofilm cells employ a corrective ‘pessimistic’ strategy that is the

mirror image of the strategy used by swimming E. coli cells. In other words, the presence of a chemoat-

tractant gradient tends to decrease the reorientation rate of swimming E. coli and tends to increase the

reorientation rate of surface attached P. aeruginosa. This indicates that evolution might select different

chemotactic strategies in swimming and biofilm cells. However, we lack fundamental understanding

about how these different strategies would affect a cell’s ability to acquire nutrients. Here we develop

a mathematical framework to understand how the response of individual cells to chemical stimuli af-

fects their distribution at the population level, allowing us to resolve the trade-offs of these different

chemotactic strategies.

Mathematical modelling has long been used as a tool to understand how individual cell behaviour

gives rise to chemotaxis. Bacterial chemotaxis is experimentally quantified in two distinct ways: at the

microscopic scale, by quantifying the movement of individual cells (Berg & Brown, 1972; Ahmed &

Stocker, 2008; Oliveira et al., 2016) or at the macroscopic scale, for example, by measuring the size

of the rings that form around colonies growing in agar (Adler, 1966; Kearns et al., 2001; Berg, 2004).

The Keller-Segel model for chemotaxis, a drift-diffusion partial differential equation model (Keller &
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Segel, 1971; Hillen & Painter, 2009), has proved particularly useful for reconciling these two types

of experiments (Ahmed & Stocker, 2008). The classic derivation of this model follows Alt (1980)

who applied a singular-perturbation approach with parabolic scaling to analyse a governing equation

that describes straight ‘runs’ interspersed by reorientations. This approach forms the basis for more

sophisticated models that include additional processes, for example, biochemical signalling and internal

state dynamics (Tindall et al., 2008; Othmer & Xue, 2013; Xue & Yang, 2016). Regardless of the

specific implementation, however, this class of mathematical model allows one to directly test whether

conceptual descriptions of individual cell behaviour can accurately predict macroscopic distributions.

The singular-perturbation approach as used previously, while powerful, has a number of limitations

that can restrict its applicability. When working in two or higher spatial dimensions, the tumble rate bias,

which measures the difference in the tumble rate for cells moving up and down a gradient, must be suffi-

ciently small so that it can be modelled as a weak linear function of the chemoattractant gradient (Hillen

& Othmer, 2000). This gives rise to a linear relationship between chemotactic drift and chemoattractant

gradient and a diffusion rate independent of the gradient. While a one-dimensional model, based on the

telegraph equation, has been developed that allows for an arbitrary chemotactic response (Rivero et al.,

1989), the methods used to close this system of equations cannot easily be extended to higher dimen-

sions. Recently, Xue & Yang (2016) obtained a system of moment-flux models for bacterial chemotaxis

in large signal gradients. They incorporated details of the intracellular signalling which explicitly cap-

tures the excitation and adaptation time scales, and obtained a coupled system of moment equations

which gives excellent agreement between individual-based simulations even in the presence of large

chemoattractant gradients when sufficient moments are included.

An alternative approach which enables the construction of a simple drift-diffusion model for chemo-

taxis even for large gradients was developed by Thygesen (2016). In that work, the tumble rate is

assumed to depend exponentially on the chemical gradient, and it is assumed that the direction of suc-

cessive run segments are independent thus enabling probabilistic tools associated with renewal-reward

processes to be applied. However, this model does not capture ‘persistence’, which occurs when the

direction of subsequent runs are correlated. Hillen (2006) and Hillen & Painter (2013) also consid-

ered random walks in the absence of persistence, and demonstrated, using a hyperbolic scaling, that a

strongly biased random walk model could be described by a leading order drift equation with first order

correction for diffusion.

Returning to the singular-perturbation approach, which can include the effect of persistence, we

show here how the parabolic scaling can be modified to enable it to be applicable to strongly biased

chemotaxis, and obtain simple drift-diffusion models for chemotaxis. This is the novel approach de-

tailed in this paper. In the new singular perturbation approach presented here, diffusion is analysed

about a reference frame moving with the mean drift of the cells. This approach has been touched upon

previously in the context of run-and-tumble chemotaxis in shear flow (Bearon, 2003) and correlated

random-walks (Codling et al., 2010) but this paper presents the first comprehensive description of this

approach, including a detailed description of the tumble rate and turn kernel.

In section 2 we introduce the governing equation for the distribution of cell position and direction

which describes a model for chemotaxis consisting of ‘runs’ interspersed with reorientation events. We

first introduce cells with a bi-directional bias (bi-bias), whereby the tumble rate both increases when

cells are moving down the gradient and decreases when cells are moving up the gradient. In the case

of a strong chemotactic response, we assume the tumble rate depends exponentially on the chemi-

cal gradient; whereas for a weak chemotactic response this reduces to a linear function of chemical

gradient. We then specify the optimistic and pessimistic strategies to model swimming and biofilm

cells as a one-sided modification to the bi-bias strategy. Considering chemotaxis occurring on a two-
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dimensional surface, with a steady homogeneous chemical gradient, we review the derivation of the

Keller-Segel drift-diffusion equation for the cell concentration via a singular-perturbation approach for

weak chemotactic response. Our new approach, appropriate for strongly-biased chemotaxis, is then

presented, yielding again a drift-diffusion equation but with a more complex expression for the diffusiv-

ity. This drift-diffusion model for strongly-biased chemotaxis including persistence is the first key new

result of the paper.

In section 3, we present several new results using our drift-diffusion model. In section 3.1 we show

that the drift-diffusion equations obtained for weak chemotaxis are identical for optimists and pessimists,

and therefore cannot capture the difference between the two strategies. In section 3.2, we compute the

drift and diffusion coefficients as a function of chemotactic strength for the strongly-biased chemotaxis

model, and then use this to resolve how the spatial distribution of bacteria in a bounded region evolves

over time. We find that both pessimists and optimists have a lower chemotactic drift rate than the bi-

biased cells. However, pessimists have a lower diffusion rate than bi-biased cells, which in turn have

a lower diffusion rate than optimists. Furthermore, by examining the equilibrium spatial distributions,

we show that, for certain values of chemotactic strength, pessimists are better able to aggregate where

the chemoattractant is most abundant. In section 3.3 we investigate the impact of directional correlation

between runs on the drift and diffusion coefficients. The model can capture both the classic persistence

seen in swimming E. coli, which are more likely to continue in the same direction after a tumble, and the

reorientation strategy observed for surface attached P. aeruginosa, which periodically reverse direction.

In section 3.4 we demonstrate how the model can be extended to study orthotaxis, which occurs when

cells increase their speed when moving up a chemical gradient, which was observed experimentally

(Oliveira et al., 2016), and we provide further comparison with the experiments in section 3.5. In section

3.6, we compare the results from the drift-diffusion continuum model with that from an individual-

based model. Both models show the same trends for pessimistic and optimistic strategies, however, as

the chemotactic strength is increased, we find discrepancies between the individual-based simulations

and solutions of the drift-diffusion model, which are caused by boundary effects. This is explored

mathematically, and an alternative analytic equilibrium solution is obtained which agrees well with the

individual-based simulations.

2. Model

2.1 Conservation equation for ψ(xxx∗, ppp, t∗)

Our starting point is a conservation equation for the probability distribution function ψ(xxx∗, ppp, t∗) repre-

senting the distribution of cells with position xxx∗ and direction of movement ppp at time t∗. Hereinafter,

asterisks are used to distinguish dimensional quantities from the dimensionless equivalents. Assuming

a Poisson process, in that the turn rate is independent of the run time, from Alt (1980) we obtain a

description for run-and-tumble motion:

∂ψ

∂ t∗
+ ∇∇∇xxx∗ ··· (Vs pppψ)+λ ∗ψ −

∫

Ω
λ ∗(ppp′)K(ppp, ppp′)ψ(ppp′)d ppp′ = 0, (2.1)

where functions are assumed to be evaluated at (xxx∗, ppp, t∗) unless otherwise stated. The direction of

movement before and after tumbles, ppp′ and ppp, are unit vectors, and so the cell velocity is given by Vs ppp.

The third term models cells that tumble away from direction ppp with frequency λ ∗(ppp) and the fourth

term represents cells that tumble from direction ppp′ with frequency λ ∗(ppp′) and choose a new direction ppp

with probability K(ppp, ppp′). We note that
∫

Ω K(ppp, ppp′)d ppp = 1. This parameterization is consistent with the
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observation that swimming bacteria measure temporal changes in chemical concentration and use this

to modulate their tumble frequency (Berg & Brown, 1972).

2.2 Chemotactic strategies

Following Thygesen (2016), we consider a classic model for chemotaxis based on observations of E.

coli (Brown & Berg, 1974). The logarithm of mean run time is increased proportional to the time rate

of change in the number of receptors binding attractant. Assuming the receptor dynamics are at steady

state, and that chemoattractant gradient is constant in time, this can be written as

λ ∗ = λ0 exp(−ζVs ppp ···∇∇∇s), (2.2)

where λ0 is the tumble rate in the absence of chemical gradient, s is the chemoattractant concentration

and ζ is proportional to KD/(KD + s)2, where KD is the dissociation constant. For mathematical sim-

plicity, we shall make the approximation that ζ and ∇∇∇s are constant. This parameterization assumes

that cells both reduce their tumble rate if moving up a chemical gradient and increase their tumble rate

if moving down a chemical gradient. We, therefore, will hereafter call this the bi-directional bias (or

bi-bias) chemotactic strategy.

Provided ζVs ppp ···∇∇∇s ≪ 1, which corresponds to a weak chemotactic response, one can use the linear

approximation

λ ∗ = λ0(1−ζVs ppp ···∇∇∇s). (2.3)

Previous studies that used a singular perturbation derivation to characterize chemotaxis as a drift-

diffusion process have all assumed this weak, linear response.

We will also consider optimistic and pessimistic strategies to generate chemotaxis. For optimists, the

tumble rate is reduced if moving up a chemical gradient, but unchanged if moving down the gradient:

λ ∗ = λ0 exp(−ζVs(ppp ···∇∇∇s)H(ppp ···∇∇∇s)), (2.4)

where H is the Heaviside function; equal to one when cells are moving up the gradient, ppp ···∇∇∇s > 0 and

zero otherwise. For pessimists, the tumble rate is increased if moving down a chemical gradient, but

unchanged if moving up the gradient:

λ ∗ = λ0 exp(−ζVs(ppp ···∇∇∇s)H(−ppp ···∇∇∇s)). (2.5)

In Table 1 we summarize all parameters and variables considered in the chemotactic model.

2.3 Chemotaxis on a surface

Motivated by experiments on surface attached bacteria undergoing chemotaxis (Oliveira et al., 2016),

we now restrict attention to the case of cells constrained to a two-dimensional plane, with steady, ho-

mogeneous chemical gradient in the positive y∗ direction. We define the direction vector in terms of the

angle θ :

ppp = cosθ iii+ sinθ jjj. (2.6)

If we consider cells uniformly distributed in the x∗ direction, the governing equation for ψ(y∗,θ , t∗) is

given by

∂ψ

∂ t∗
+

∂

∂y∗
(Vs sinθψ)+λ ∗ψ −

∫ π

−π
λ ∗(θ ′)K(θ ,θ ′)ψ(θ ′)dθ ′ = 0. (2.7)
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Table 1. Key parameters and variables in the chemotactic model

ψ(xxx, ppp, t) Probability distribution of cell position and orientation

ppp = cosθ iii+ sinθ jjj Direction of movement

n(y, t) =
∫ π
−π ψ(y,θ , t)dθ Probability distribution of cell position

Vs Cell speed

λ0 Basal tumble rate

K(θ ,θ ′) = 1
2πI0(κ)

exp(κ cos(θ −θ ′)) Turn kernel, typically Von-Mises distribution with pa-

rameter κ; κ = 0 corresponds to isotropic tumbles

ε = Vs

Lλ0
≪ 1 Ratio of mean basal run length to characteristic length-

scale, L

χ Chemotactic strength, defined following equations

(2.2,2.15)

D Non-dimensional diffusion coefficient

py Mean component of cell direction up the chemical gra-

dient; py = 1 for cells moving purely up the chemical

gradient, py = 0 for cells moving in random directions

For a steady, homogeneous chemical gradient in the y∗ direction, the tumble rate, eq. (2.2), reduces

to

λ ∗ = λ0 exp(−ζVs sinθ
ds

dy∗
), (2.8)

with corresponding linear approximation:

λ ∗ = λ0(1−ζVs sinθ
ds

dy∗
). (2.9)

The optimistic and pessimistic strategies are given by:

λ ∗
op = λ0 exp(−ζVs sinθ

ds

dy∗
H(sinθ)), (2.10)

λ ∗
pess = λ0 exp(−ζVs sinθ

ds

dy∗
H(−sinθ)). (2.11)

We shall only consider reorientation kernels symmetric in θ −θ ′, i.e.

K(θ ,θ ′) = h(|θ −θ ′|), (2.12)

where h is an arbitrary smooth function.

2.4 Formal perturbation approach to derive drift-diffusion model

To observe diffusive-like behaviour, we need to examine dynamics occurring on length and time scales

large compared to typical runs. Furthermore, we use non-dimensionsalization to reduce the num-

ber of tunable parameters, a technique used across many different fields (e.g. Leal, 2007). We non-

dimensionalise on a characteristic length scale L, such that y = y∗/L. This characteristic length scale
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can be taken to be the size of the experimental system (Alt, 1980) or the distance over which the cell

concentration changes, and define

ε =
Vs

Lλ0
≪ 1. (2.13)

This limit of ε ≪ 1 corresponds to a situation in which the lengthscale of the variation in the distribution

of cells is large compared to a typical run length, Vs

λ0
. Furthermore we non-dimensionalise time, t = t∗/T ,

based on the time for diffusion to act over the length scale L: T = L2λ0/V 2
s = 1/(ε2λ0). We thus focus

on temporal dynamics that occur on diffusive time scales which are very large compared to the typical

run duration, 1/λ0. More information on this parabolic limit, and also the hyperbolic limit (where

instead the time scale is given by T = 1/(ελ0)) is given by Hillen (2006).

The non-dimensional governing equation for ψ is then given by

ε2 ∂ψ

∂ t
+ ε

∂

∂y
(sinθψ)+λψ −

∫ π

−π
λ (θ ′)K(θ ,θ ′)ψ(θ ′)dθ ′ = 0, (2.14)

where the tumble rate λ for bi-biased cells is given by

λ = exp(−εχ sinθ), (2.15)

and χ = λ0ζ ds
dy

measures the chemotactic strength. The corresponding linear approximation is given by

λ = 1− εχ sinθ . (2.16)

This approximation is valid provided εχ ≪ 1. As we are assuming ε ≪ 1 in this perturbation approach,

we can use this linear approximation provided χ = O(1).
The optimistic and pessimistic strategies are given by:

λop = exp(−εχ sinθH(sinθ)), (2.17)

λpess = exp(−εχ sinθH(−sinθ)). (2.18)

2.4.1 Weak chemotaxis We here review the parabolic scaling approach to obtaining the Keller-Segel

drift-diffusion equation for chemotaxis. For a more formal functional analysis approach, the reader is

referred for example to Hillen & Othmer (2000) or Othmer & Xue (2013). For weak chemotaxis, with

dimensional turn rate given by eq. (2.16), the non-dimensional governing equation for ψ is given by

ε2 ∂ψ

∂ t
+ ε

∂

∂y
(sinθψ)+(1− εχ sinθ)ψ

−
∫ π

−π
(1− εχ sinθ ′)K(θ ,θ ′)ψ(θ ′)dθ ′ = 0. (2.19)

To obtain a closed equation for the cell concentration, n(y, t), we first define the first three moments

of ψ:

n(y, t) =
∫ π

−π
ψ(y,θ , t)dθ , (2.20)

j(y, t) =
∫ π

−π
sinθψdθ , (2.21)

Q(y, t) =
∫ π

−π
sin2 θψdθ . (2.22)
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Taking moments of equation (2.19) yields equations relating these moments (see appendix B, using

the approach reviewed for example by Saintillan & Shelley (2013)):

ε2 ∂n

∂ t
+ ε

∂ j

∂y
= 0, (2.23)

ε2 ∂ j

∂ t
+ ε

∂Q

∂y
+(1−α) j− ε(1−α)χQ = 0, (2.24)

where α is the index of persistence (Lovely & Dahlquist, 1975; Othmer & Xue, 2013) measuring the

mean cosine of the turn angle (i.e. the mean angle between two consecutive runs, see appendix A). To

close the system, we now make use of the fact that ε ≪ 1 and consider a perturbation expansion for ψ:

ψ = ψ(0)(y,θ , t)+ εψ(1)(y,θ , t)+ · · · . (2.25)

At leading order, from equation (2.19) we have that

ψ(0) =
∫ π

−π
K(θ ,θ ′)ψ(0)(θ ′)dθ ′. (2.26)

For the class of turn kernel given by equation (2.12), this equation has the unique solution

ψ(0)(y,θ , t) =
1

2π
n(0)(y, t). (2.27)

A proof of this result is provided in appendix A, for more details see Hillen & Othmer (2000). Intuitively,

if the turn kernel only depends on the change in direction, |θ −θ ′|, and allows cells to sample all possible

orientations, the isotropic solution will be the leading order equilibrium solution. That is, after sufficient

reorientation events, we expect there to be no bias in the orientation distribution at leading order.

We thus have that

j(0) =
∫ π

−π
sinθψ(0)dθ = 0, (2.28)

Q(0) =
∫ π

−π
sin2 θψ(0)dθ =

1

2
n(0)(y, t). (2.29)

Equations (2.23) and (2.24) thus give

At O(ε2) :
∂n(0)

∂ t
+

∂ j(1)

∂y
= 0, (2.30)

At O(ε) :
∂Q(0)

∂y
+(1−α) j(1)− (1−α)χQ(0) = 0, (2.31)

which, on inserting the expression Q(0) = 1
2 n(0)(y, t), can be rearranged to give a single equation for

n(0):

∂n(0)

∂ t
+

1

2

∂

∂y

(

χn(0)−
1

(1−α)

∂n(0)

∂y

)

= 0. (2.32)
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To compare with previous results and examine the explicit dependence of chemotactic drift and

diffusion on speed and turn rate, it is helpful to write this equation in terms of dimensional quantities:

∂n(0)

∂ t∗
+

∂

∂y∗

(

1

2
εχVsn

(0)−
1

2(1−α)

V 2
s

λ0

∂n(0)

∂y∗

)

= 0. (2.33)

The chemotactic drift velocity, 1
2 εχVs =

1
2V 2

s ζ ds
dy∗

, depends quadratically on cell speed, which is in

agreement with previous results (e.g. Rivero et al., 1989). In addition, we find that the diffusivity

is proportional to
V 2

s

λ0
as predicted by the classic Keller-Segel model of chemotaxis, with persistence

modifying the diffusion co-coefficient in the same way as described by Lovely & Dahlquist (1975). Note

that the bias in the tumble rate affects the drift component, but it does not affect the rate of diffusion, as

we are only examining the weak, leading-order effects of chemotaxis.

In the case of weak chemotaxis, we can relate the ratio of turn rates up and down the gradient to the

drift velocity. For bi-biased cells, we have that

λup

λdown

≈ 1−2εχ, (2.34)

and so the chemotactic drift is given by

1

2
εχVs ≈

1

4
(1−

λup

λdown

)Vs. (2.35)

For this model of weak chemotaxis, we thus obtain an upper bound of chemotactic drift equivalent to

25% of the cell speed. In contrast, E. coli has been observed to attain a chemotactic drift of approxi-

mately 30% of its swimming speed under certain conditions (Ahmed & Stocker, 2008). Furthermore,

we note that even approaching this theoretical limit of 25% invalidates the assumption of weak chemo-

taxis as it assumes the ratio of tumble rates tends to zero. Therefore, this formulation clearly cannot be

used to model cells that are capable of biasing a large fraction of their motility up a chemical gradient.

2.4.2 Arbitrary chemotactic response For strong chemotaxis, we may expect the mean drift to be

strong, and so to examine the diffusive behaviour around this, we need to change to a reference frame

moving with the mean drift (c.f. Bearon & Grünbaum (2008); Codling et al. (2010)). We define f (θ)
as the steady direction distribution given by

f =
1

∫ π
−π

1
λ (θ)dθ

1

λ
. (2.36)

This distribution satisfies the equation

λ f −
∫ π

−π
λ (θ ′)K(θ ,θ ′) f (θ ′)dθ ′ = 0, (2.37)

subject to the constraint
∫ π
−π f (θ)dθ = 1. This represents an equilibrium distribution for which cells are

turning away from angle θ at the same rate they are turning towards the angle θ .

We define the mean component of cell direction up the gradient as

py =
∫ π

−π
sinθ f (θ)dθ . (2.38)
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The mean drift, Vs py, non-dimensionalised on the characteristic speed L/T = εVs is given by 1
ε py. Recall

here that L is defined as the characteristic length scale and T the characteristic time scale for diffusion

to act over the length scale L: T = L2λ0/V 2
s = 1/(ε2λ0). We therefore consider a change of reference

frame moving with the mean drift:

y = z+
1

ε
pyt, (2.39)

and transform equation (2.14):

ε2 ∂ψ

∂ t
+ ε

∂

∂ z
((sinθ − py)ψ)+λψ −

∫ π

−π
λ (θ ′)K(θ ,θ ′)ψ(θ ′)dθ ′ = 0. (2.40)

Integrating this equation over θ gives the conservation equation

ε2 ∂n

∂ t
+ ε

∂

∂ z

∫ π

−π
(sinθ − py)ψdθ = 0. (2.41)

We now make use of the fact that ε ≪ 1 and consider a perturbation expansion for ψ:

ψ = ψ(0)(z,θ , t)+ εψ(1)(z,θ , t)+ · · · . (2.42)

Equation (2.40) yields at leading order

λψ(0) =
∫ π

−π
λ (θ ′)K(θ ,θ ′)ψ(0)(θ ′)dθ ′. (2.43)

As shown in appendix A, for the turn kernels we are considering, equation (2.12), the leading order

solution is given by

ψ(0)(z,θ , t) = f (θ)n(0)(z, t). (2.44)

In contrast to the perturbation expansion for weak chemotactic response, equation (2.25), we see that

now at leading order the cells are not isotropically distributed because the chemotactic bias is a leading

order effect.

Equation (2.40) yields

At O(ε) :

(sinθ − py) f
∂n(0)

∂ z
+λψ(1)−

∫ π

−π
λ (θ ′)K(θ ,θ ′)ψ(1)(θ ′)dθ ′ = 0. (2.45)

As shown in appendix A, the solution to this equation is given by

ψ(1) = − f (1)(θ)
∂n(0)

∂ z
+ f (θ)n(1) (2.46)

where f (1)(θ) satisfies

λ f (1)−
∫ π

−π
λ (θ ′)K(θ ,θ ′) f (1)(θ ′)dθ ′ = (sinθ − py) f , (2.47)

∫ π

−π
f (1)(θ)dθ = 0. (2.48)
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We can now compute

∫ π

−π
(sinθ − py)ψ

(1)dθ =−
∂n(0)

∂ z

∫ π

−π
(sinθ − py) f (1)dθ , (2.49)

and thus the conservation equation (2.41) yields the diffusion equation at leading order:

∂n(0)

∂ t
−

∂

∂ z

(

D
∂n(0)

∂ z

)

= 0, (2.50)

where

D =
∫ π

−π
(sinθ − py) f (1)dθ . (2.51)

Reverting to fixed-frame non-dimensional variables gives the drift-diffusion equation

∂n(0)

∂ t
+

∂

∂y

(

1

ε
pyn(0)−D

∂n(0)

∂y

)

= 0. (2.52)

As for weak chemotaxis, to examine the explicit dependence of chemotactic drift and diffusion on speed

and turn rate, it is helpful to write this equation in terms of dimensional quantities:

∂n(0)

∂ t∗
+

∂

∂y∗

(

Vs pyn(0)−
V 2

s

λ0
D

∂n(0)

∂y∗

)

= 0. (2.53)

2.5 Individual based simulations

To test out the predictions of the theory, we compare with the results of individual-based stochastic

simulations for isotropic tumbles. In the individual based simulations, we choose to non-dimensionalise

time on λ0, and so define a new non-dimensional time, τ = λ0t∗, which is related to t by t = ε2τ . We

initialise N bacteria at y = y0 and draw the initial cell direction, θi(0) of the ith bacterium from the

standard uniform distribution on the open interval (−π,π). At each time interval ∆τ , with probability

λ (θi)∆τ ≪ 1, the bacteria tumbles and its direction is updated to a new value of θ drawn from the

standard uniform distribution on the open interval (−π,π). In each time interval ∆τ , the position yi is

updated because the bacterium moves a distance ε∆τ sinθi. We impose reflective boundary conditions

at y = 0 and y = 1 such that if the updated position of bacterium at time τ + ∆τ given by yi(t) +
ε∆τ sinθi < 0 with direction θi such that sinθi < 0 then we reflect so that the position of bacterium

at time τ +∆τ given by yi(t)− ε∆τ sinθi > 0 with direction −θi. A similar condition is imposed at

y = 1. The numerical simulations were implemented in Matlab2016a using the inbuilt random number

generator rand, with default parameters y0 = 0.2,∆τ = 0.1. We verified convergence by repeating the

simulations using ∆τ = 0.05.

3. Results

3.1 Weak chemotaxis model is insufficient to examine difference between optimistic and pessimistic

strategies

Consider an optimistic strategy with weak chemotaxis, taking a linear approximation of equation (2.17)

as the tumble rate:

λ = 1− εχ sinθH(sinθ). (3.1)
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For mathematical simplicity, we focus attention on isotropic tumbles, taking

K(θ ,θ ′) =
1

2π
. (3.2)

With this form for the tumble rate, the leading order first moment equation (2.31) becomes

∂Q(0)

∂y
+ j(1)−χQ(0)+ = 0, (3.3)

where Q(0)+ =
∫ π

0 sin2 θψ(0)dθ . On taking ψ(0) = 1
2π n(0), we obtain the drift-diffusion chemotaxis

equation found previously, but with the drift term being halved:

∂n(0)

∂ t
+

1

2

∂

∂y

(

1

2
χn(0)−

∂n(0)

∂y

)

= 0. (3.4)

The exact same chemotactic drift-diffusion equation is found for the pessimistic strategy for which the

tumble rate is increased if moving down a chemical gradient, but unchanged if moving up the gradient:

λ = 1− εχ sinθH(−sinθ). (3.5)

Although the average run duration for pessimists with tumble rate given by equation (3.5) is longer than

the average run duration for optimists, this does not affect the diffusion because modifying the tumble

rate only changes the drift component, not the diffusive component.

3.2 Results for strong chemotaxis, isotropic tumbles

We now obtain explicit expressions for the drift and diffusion coefficients for strong chemotaxis, as-

suming isotropic tumbles, K(θ ,θ ′) = 1/2π . We initially obtain results for the bi-biased cells, and then

compare the optimistic and pessimistic strategies.

3.2.1 Calculation of drift & diffusion coefficients From equations (2.38,2.51), the mean component

of cell direction up the gradient and non-dimensional diffusion coefficient are defined as functions of

the equilibrium direction distribution f , given by equation (2.36) (depicted in Fig. 1(a)), and f (1) which

satisfies equation (2.47) with K(θ ,θ ′) = 1/2π:

λ f (1)−
1

2π

∫ π

−π
λ (θ ′) f (1)(θ ′)dθ ′ = (sinθ − py) f . (3.6)

On rearranging this equation, the function f (1) can be written as

f (1)(θ) =
C1 +(sinθ − py) f (θ)

λ (θ)
, (3.7)

where the unknown constant C1 =
1

2π

∫ π
−π λ (θ ′) f (1)(θ ′)dθ ′. The constant C1 is determined on applying

the normalisation condition
∫ π
−π f (1)dθ = 0 introduced in equation (2.48):

∫

C1 +(sinθ − py) f (θ)

λ (θ)
dθ = 0 (3.8)

⇒C1 =−
∫

(sinθ − py) f (θ)

λ (θ)
dθ

/

∫

1

λ (θ)
dθ . (3.9)
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Furthermore on inserting equation (3.7) into equation (2.51), and making use of equations (2.36,2.38),

we obtain the following expression for the diffusion coefficient solely in terms of the equilibrium direc-

tion distribution:

D =
∫ π

−π

f (θ)

λ (θ)
(sinθ − py)

2dθ . (3.10)

This integral was computed numerically using Matlab2016a for bi-bias, optimist and pessimist strategies

as given by tumble rates specified by equations (2.15,2.17,2.18), for a range of chemotactic strengths,

χ .

In Fig. 1(b), for small values of εχ we see agreement with the weak chemotactic calculations,

py ∼
1
2 εχ for bi-bias, and py ∼

1
4 εχ for optimists and pessimists. The drift is less for optimists and

pessimists than bi-bias because cells only respond to the gradient when moving down (pessimist) or up

(optimist) the gradient. As the chemotactic strength increases, the value of py saturates. For optimist and

bi-bias cells the mean direction tends toward movement that is purely up the gradient, py = 1. However,

pessimist cells are equally likely to move in any direction with a positive component up the gradient, so

py →
1
π

∫ π
0 sinθdθ = 2/π as εχ → ∞.

In Fig. 1(b), we see the effect of bias on the diffusion rate which contrasts with the weak chemotaxis

calculations where diffusion was unaffected by chemotactic bias. We see that pessimistic cells have a

lower diffusion rate than bi-bias cells which in turn have a lower diffusion rate than optimistic cells.

This can be explained because of the relative average run duration; pessimistic cells have the shortest

average run duration because the run duration is reduced when moving down the gradient whereas

optimistic cells have the longest average run duration because the run duration is increased when moving

up the gradient. Furthermore, whereas pessimistic cells have a monotonic decrease in diffusion rate with

chemotactic strength, bi-bias and optimistic cells display a more complex relationship with chemotactic

strength.

3.2.2 Computing spatial aggregation We now consider the spatial distribution of cell concentration,

n(0)(y, t) for a bounded region, where there is zero cell flux at boundaries y = 0 and y = 1. The equilib-

rium, no-flux, solution to the drift-diffusion equation (2.52) with unit mass is given by

n(0) =
µ

eµ −1
eµy, where µ =

py

εD
. (3.11)

We can interpret 1/ε = Lλ0/Vs as the height of the chamber non-dimensionalised on Vs/λ0, and thus we

can see how the equilibrium distribution will vary with the height of the chamber.

In Fig. 1(d) we see that the ratio of drift to diffusion, which determines the equilibrium distribution,

is always greater for bi-bias and pessimists than for optimists, and when εχ & 2 the ratio is greatest for

the pessimist strategy. This indicates that pessimists are better able to concentrate in preferred regions

when the chemotactic strength is sufficiently high; as indicated in the final distribution of cells depicted

in Fig. 2(f).

Furthermore, in Fig. 1(e) we identify how cell speed, non-dimensionalised on Lλ0, given by pa-

rameter ε =Vs/Lλ0, affects µ , the exponent of the steady state accumulation. For the weak chemotaxis

model, with py ∝ εχ , and D a constant, steady state accumulation is independent of ε , as previously

observed (e.g. Son et al., 2016). In contrast, for strong chemotaxis the steady-state accumulation varies

with cell speed and strategy. For optimists, the accumulation decreases monotonically with cell speed,

whereas for bi-bias and pessimists there is an initial increase, followed by decrease. In particular, for
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pessimists, faster speeds result in a two-fold increase in µ , from µ = χ/2 when ε = 0 to a maximum

of µ = χ . The non-intuitive prediction of non-uniform accumulation at zero swimming speed, ε = 0,

arises from µ =
py

εD
→ χ/2 in the limit of ε → 0. However, this non-uniform accumulation would take

an infinite time to be realised as, when non-dimensionalised on L and λ0, the drift, ε py, and diffusion,

ε2D, both tend to zero as ε → 0.

To examine the transient distribution we numerically solved the drift-diffusion equation (2.52) for a

region y∈ (0,1) with reflective boundary conditions (Fig. 2) taking a sharply peaked unit mass Gaussian

centred around y0 = 0.2. Solutions were obtained using the Matlab2016a pdepe solver, taking ε =
0.1. The solution obtained at t = 1 is indistinguishable from the equilibrium solution, equation (3.11).

We note that because pessimists have a lower diffusion rate they take longer to attain the equilibrium

distribution.

3.3 Investigating the impact of non-isotropic tumbles for strong chemotaxis

We shall now consider two examples of non-isotropic tumbles. Firstly we shall consider a standard

model of persistence, whereby the new direction post-tumble is positively correlated with the pre-tumble

direction. We shall then consider modelling the run-reverse strategy where cells approximately reverse

direction between runs. We assume the turn kernel satisfies the Von-Mises distribution:

K(θ ,θ ′) = h(|θ −θ ′|) =
1

2πI0(κ)
exp
(

κ cos(θ −θ ′)
)

, (3.12)

where I0 is the modified Bessel function of order 1. Note that κ is related to the index of persistence, α:

α = 2

∫ π

0
cosuh(u)du =

I1(κ)

I0(κ)
. (3.13)

Experiments have shown that the movement of E. coli closely matches this turn kernel for α = 0.46

(Taylor-King et al., 2015). When κ > 0, the turn kernel represents persistence, whereby the distribution

of new directions, θ , is peaked around the pre-tumble direction, θ ′.

For a pure run-reverse movement, the turn kernel is given by

K(ppp, ppp′) = δ (ppp+ ppp′), (3.14)

where δ is the Dirac delta function, equal to zero except when ppp = −ppp′. The index of persistence

for this strategy is α = −1. In order to generate a random walk which is not restricted to purely the

initial direction ppp0 and the reverse direction −ppp0 we could include rotational diffusion in the model.

Alternatively, we can approximate a run-reverse strategy by taking a sufficiently large negative value

of κ < 0 in the Von-Mises turn kernel. For example, a value of κ = −10 yields a persistence index of

α =−0.9486.

The governing drift-diffusion equation (2.52), with coefficients defined by eq. (2.38, 2.51) is still

valid. The steady direction distribution, f , and hence the drift coefficient are unchanged for non-

isotropic tumbles. However the function f (1) which appears in the diffusion coefficient and is defined

in eq. (2.47) has now to be computed numerically as the solution of a Fredholm equation of the second

type (see appendix C for details).

The effect of persistence on the diffusion rate for the different strategies is depicted in Fig. 3. For

εχ = 0 we have that D = (1−α)/2, in agreement with equation (2.32) found for weak chemotaxis. As
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FIG. 1. Drift & diffusion coefficients for bi-bias (Solid line); optimist (Dashed line); pessimist (Dash-dot). (a) Equilibrium
direction distribution, f (θ), for chemotactic strength εχ = 1; (b) Mean component of cell direction up the gradient, py, as a
function of εχ; (c) Non-dimensional diffusion constant, D, as a function of εχ; (d) Ratio of py to D as a function of εχ; (e)

Equilibrium exponent, µ =
py

εD
as a function of ε =Vs/Lλ0, the cell speed non-dimensionalised on Lλ0, for χ = 20.
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FIG. 2. Solution to drift-diffusion equation with no flux boundary conditions for bi-bias (Solid line); optimistic (Dashed line);
pessimistic (Dash-dot) strategies at times t = 10−3 (a,d), t = 0.1 (b,e), t = 1 (c,f) for chemotactic strength εχ = 1 (a,b,c) and
εχ = 4 (d,e,f).
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for the case of weak chemotaxis, an increase in the index of persistence results in an increase in diffusion

rate for all strategies. An increase in persistence will result in cells being able to search their environment

more rapidly, but they will be less able to concentrate in preferred regions. In contrast, when the index

of persistence is negative, representative for example of the run-reverse strategy, cells will search their

environment more slowly, but they will be better able to concentrate in preferred regions. The effect

of persistence on the diffusion rate becomes less pronounced as the chemotactic strength increases,

but it appears that the run-reverse and isotropic turn kernel converge to a diffusion rate slightly lower

than the turn kernel with positive persistence for all three chemotactic strategies (bi-bias, optimistic and

pessimistic).

3.4 Orthotaxis

Many chemicals affect the speed at which cells move. These changes in cell speed can be classified into

two categories: chemokinesis occurs when cell speed depends on the local concentration of a chemical,

whereas orthotaxis occurs when cell speed depends on the local chemical gradient. Motivated by recent

experiments, which found that biofilm cells move faster up chemoattractant gradients than down them

(Oliveira et al., 2016), here we investigate the effect of orthotaxis by allowing the cell speed to depend

on its direction of movement. Equation (2.14) becomes

ε2 ∂ψ

∂ t
+ ε

∂

∂y
(v(θ)sinθψ)+λψ −

∫ π

−π
λ (θ ′)K(θ ,θ ′)ψ(θ ′)dθ ′ = 0, (3.15)

where the function v(θ) describes how the non-dimensional speed varies as function of direction, θ .

We consider the case where the tumble rate is uniform, λ = 1, tumbles are isotropic, K(θ ,θ ′) = 1
2π ,

and there is only a weak bias in cell speed corresponding to faster movement up the gradient:

v(θ) = 1+ εν sinθ , (3.16)

where ν is defined as the coefficient of orthotaxis. Equation (3.15) reduces to

ε2 ∂ψ

∂ t
+ ε

∂

∂y
((1+ εν sinθ)sinθψ)+ψ −

1

2π
n = 0. (3.17)

Taking moments of equation (3.17) yields:

ε2 ∂n

∂ t
+ ε

∂ j

∂y
+ ε2ν

∂Q

∂y
= 0, (3.18)

ε2 ∂ j

∂ t
+ ε

∂Q

∂y
+ ε2ν

∂P

∂y
+ j = 0, (3.19)

where we have introduced the third order moment P =
∫ π
−π sin3 θψdθ . As previously, we consider a

perturbation expansion for ψ:

ψ =
1

2π
n(0)(y, t)+ εψ(1)(y,θ , t)+ · · · , (3.20)
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FIG. 3. Investigating effect of persistence on diffusion coefficient and chemotactic clustering: isotropic tumbles (Solid line);
negative persistence κ =−1 (Dashed line); positive persistence κ = 1 (Dash-dot). Left-hand panels are non-dimensional diffusion
constant, D, as a function of εχ and right-hand panels are ratio of py to D as a function of εχ . (a,b) Bi-bias; (c,d) Optimist; (e,f)
Pessimist. Horizontal lines indicate diffusion coefficient for weak chemotaxis, D = 1/2(1−α) where α is index of persistence.
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which yields j(0) = P(0) = 0 and Q(0) = 1
2 n(0)(y, t). At leading order in ε , equations (3.18) and (3.19)

thus give

∂n(0)

∂ t
+

∂ j(1)

∂y
+ν

∂Q(0)

∂y
= 0, (3.21)

∂Q(0)

∂y
+ j(1) = 0, (3.22)

which, on inserting the expression Q(0) = 1
2 n(0)(y, t), can be rearranged to give a single equation for

n(0):

∂n(0)

∂ t
+

1

2

∂

∂y

(

νn(0)−
∂n(0)

∂y

)

= 0, (3.23)

which in dimensional variables is given by

∂n(0)

∂ t∗
+

∂

∂y∗

(

1

2
ενVsn

(0)−
V 2

s

2λ0

∂n(0)

∂y∗

)

= 0. (3.24)

We can relate the ratio of cell speed up and down the gradient to the drift velocity. We have that

vdown

vup

≈ 1−2εν (3.25)

and so the mean movement along the gradient is given by

1

2
ενVs ≈

1

4
(1−

vdown

vup

)Vs. (3.26)

3.5 Comparison with experiments

Oliveira et al. (2016) show that surface attached P. aeruginosa cells use a pessimistic strategy and

their reversal rate nearly doubles when they move down a chemoattractant gradient. Comparing the

tumble rate for θ = π/2 (up gradient) with the tumble rate at θ = −π/2 (down gradient) in our model

of strong chemotaxis, equation (2.18), allows us to estimate the chemotactic strength as εχ = ln2.

Using the expressions in section 3.2.1 and assuming isotropic tumbles, we then can predict the mean

component of cell motility directed along the gradient is py = 0.16 and the non-dimensional diffusion

coefficient is D = 0.34. In contrast, to obtain the same bias the weak chemotaxis model (section 3.1)

requires that εχ = 1. While this clearly violates the underlying assumption of the weak chemotaxis

model that εχ ≪ 1, for εχ = 1 the weak chemotaxis model predicts that the mean fraction of motility

directed along the gradient is 1
4 εχ = 1/4 and the diffusion coefficient is D = 1/2, the latter of which is

independent of the bias. Therefore, in this limit the weak chemotaxis model overestimates both the drift

and diffusion by approximately 50%. Of course, cells within biofilms do not perform isotropic tumbles,

but instead exhibit run-reverse movement that can modelled using a negative persistence. Our results for

the strong chemotaxis model show that the chemotactic drift is independent of the value of persistence,

but diffusion is reduced for cells that exhibit run-reverse behaviour (Fig. 3).
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Aside from a bias in the reversal rate, another way for a population of cells to generate a net drift

along a chemical gradient is via the modulation of cell speed. Oliveira et al. (2016) find that P. aerugi-

nosa move 25% faster when moving up a gradient than when moving down a gradient, suggesting that

this orthotactic response may help facilitate a population’s movement along gradients. Using the weak

orthotactic approximation given by equation (3.26) these values yield a mean drift of 5% of the cell

speed and thus within the modelling framework presented here, orthotaxis appears less important than

bias in reversal rate. However, this calculation is only a rough approximation and assumes that they

do not preferentially bias their runs up chemoattractant gradients. Further studies will be required to

ascertain how variation in cell speed interacts with a strong chemotactic response.

3.6 Comparison with individual-based simulation

In Fig. 4(a-c) the spatial distribution of cells from an individual-based simulation, described in section

2.5, is compared with the numerical solution of the drift-diffusion equation (2.52) with zero cell flux at

boundaries y = 0 and y = 1, for chemotactic strength εχ = 1, and ε = 0.1. These results are for a bi-bias

strong chemotactic response with isotropic tumbles, and so the drift and diffusion coefficients are as

calculated in section (3.2.1) with non-linear tumble rate defined by equation (2.15). As expected, on

time-scales long compared to that of individual steps in the random walk, we see good agreement in the

spatial distribution. Specifically, t = 0.1 corresponds to a time of τ = t/ε2 = 10 non-dimensionalised

on runs of typical duration 1/λ0.

Further evidence for the agreement between the individual-based simulation and numerical solution

of the drift-diffusion equation is provided in Fig. 5, where a larger domain, given by ε = 0.01, and

larger chemotactic strength εχ = 2, is investigated. We show how the spatial distribution is affected by

the chemotactic strategy, that is whether cells use a bi-bias, optimistic, or pessimistic strategy as defined

through their tumble rate functions, equations (2.15, 2.17, 2.18). In all cases we assume isotropic

tumbles. We see that the velocity of the peak in the distribution is largest for the bi-bias strategy and

smallest for the pessimistic strategy. Moreover, the optimistic strategy generates cells distribution that

are less peaked than the other two strategies. These results are consistent with our calculations of the

drift and diffusion coefficients shown in Fig. 1.

We also see in Fig. 4(f,g) that the direction distribution agrees well for intermediate times. How-

ever, we note that as the equilibrium spatial distribution is attained, the direction distribution appears

approximately uniform (Fig. 4(h)) in contrast to the direction distribution predicted by equation (2.36).

In Fig. 6(a-c) we see that there is agreement between the equilibrium predictions from the drift-

diffusion model and the individual-based simulations when examining optimistic and pessimistic strate-

gies. Here we examine how the equilibrium spatial distribution is affected by the chemotactic strength,

as measured by εχ , and the chemotactic strategy, that is whether cells are bi-bias, optimistic, or pes-

simistic. Specifically, these simulations validate our finding that the pessimistic strategy is better than

the optimistic strategy at concentrating in preferred regions for all chemotactic strengths considered.

However, as the chemotactic strength is increased, we note a discrepancy in predictions; with the

drift-diffusion model under-predicting the aggregation for pessimists and bi-bias strategies, and over-

predicting the aggregation of optimists.

To understand this discrepancy, we return to the full governing equation for ψ , equation (2.14) and
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FIG. 4. Comparison of individual-based stochastic simulations with solution to drift-diffusion equation for bi-bias at times (a)
t = 10−3 , (b) t = 0.01, (c) t = 0.1 , and (d) t = 1 for chemotactic strength εχ = 1, and ε = 0.1. Histogram is result from
individual based simulations, with ∆τ = 0.1, solid line is solution of drift-diffusion equation as Fig. 2. The corresponding
direction distribution at the same times are given in (e-g); histogram is result from individual based simulation, solid line is
direction distribution given by equation (2.36).
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FIG. 5. Comparison of individual-based stochastic simulations with solution to drift-diffusion equation for a larger domain
represented by ε = 0.01, with chemotactic strength εχ = 2. Histogram is result from individual based simulations, with ∆τ = 0.01,
solid line is solution of drift-diffusion equation with no flux boundary conditions.

Page 22 of 36

http://mc.manuscriptcentral.com/imammb

Mathematical Medicine and Biology: A Journal of the IMA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Review
 O

nly

STRATEGIES FOR CHEMOTAXIS 23 of 36

FIG. 6. Comparison of equilibrium spatial distribution in individual-based stochastic simulations (histogram) with equilibrium
solution to drift-diffusion equation (solid line) and direct equilibrium solution (dashed line) for (a,d,g) bi-bias; (b,e,h) optimist;
(c,f,i) pessimist. Chemotactic strength: (a,b,c) εχ = 1; (d,e,f) εχ = 2; (g,h,i) εχ = 4.
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consider the equilibrium solution with isotropic tumbles:

ε
∂

∂y
(sinθψ)+λψ −

1

2π

∫ π

−π
λ (θ ′)ψ(θ ′)dθ ′ = 0. (3.27)

At the boundary, we impose zero cell flux. To interpret this as a boundary condition on ψ , as in Bearon

& Hazel (2015), we note that the integral of equation (2.14) over θ yields the conservation equation

(2.23) for cell density

ε
∂n

∂ t
+

∂ j

∂y
= 0, (3.28)

where j =
∫ π
−π sinθψdθ is the vertical flux of cells. At equilibrium, j must be independent of y and

therefore is zero everywhere:

∫ π

−π
sinθψdθ = 0. (3.29)

By inspection, we can propose a solution to equation (3.27) subject to boundary condition (3.29):

ψ =
1

β sinθ +λ
exp

(

βy

ε

)

, (3.30)

where β is defined by the no-flux condition,
∫ π
−π sinθψdθ = 0:

∫ π

−π

sinθ

β sinθ +λ
dθ = 0. (3.31)

This direct equilibrium solution for cell concentration agrees well with results from the individual-

based simulation as shown in Fig. 6, and the direct equilibrium direction distribution also agrees well

with results from the individual based simulations as shown in Fig. 7. However, whilst we have been

able to obtain a more accurate prediction for the equilibrium distribution, further work is needed to

derive the corresponding governing equation to describe the temporal evolution of the cell concentration,

and to determine whether this can be described by a drift-diffusion equation.

4. Discussion

This work develops a mathematical framework to predict how populations of bacteria move and dis-

tribute within chemical gradients. The framework assumes cells move along a two-dimensional surface

where cells move along straight ‘runs’ that are interspersed by reorientation events. We have explicitly

identified the relationship between the population-level chemotactic drift and diffusion, and the reori-

entation rate and turn kernel for when the bias in reorientation rate strongly depends on the chemoat-

tractant gradient. We have also investigated how the drift-diffusion approximation obtained through a

singular perturbation analysis compares with individual-based stochastic simulations. When compar-

ing our drift-diffusion approximation to individual-based simulations, we observed a breakdown of the

drift-diffusion continuum models due to the presence of the no-flux boundary, as previously observed in

the context of phytoplankton in shear (Bearon et al., 2011). This led us to develop an alternative analytic

model that shows excellent agreement with numerical results.
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FIG. 7. Comparison of equilibrium direction in individual-based stochastic simulations (histogram) with direct equilibrium solu-
tion (solid line) for (a,d,g) bi-bias; (b,e,h) optimist ; (c,f,i) pessimist. Chemotactic strength: (a,b,c) εχ = 1; (d,e,f) εχ = 2; (g,h,i)
εχ = 4.
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Bacteria generate chemotaxis using a diversity of different mechanisms. While the optimistic strat-

egy of swimming E. coli is well known (Berg & Brown, 1972; Berg, 2004), recent experiments suggest

that freely swimming P. aeruginosa cells might use a similar strategy (Cai et al., 2016). In the absence of

serine singly flagellated P. aeruginosa reverse direction every 0.56 s, compared to 0.68 s and 0.54 s when

swimming up and down a serine gradient, respectively, suggesting a predominately optimistic response.

Further experiments are needed, however, to ascertain whether a homogeneous distribution of serine

affects the reorientation rate of swimming P. aeruginosa, as observed for swimming E. coli (Brown &

Berg, 1974). Tentatively, though it appears that P. aeruginosa might use a pessimistic strategy for pili

based chemotaxis (Oliveira et al., 2016) and an optimistic strategy for flagella based chemotaxis (Cai

et al., 2016). We note that P. aeruginosa uses two distinct molecular systems to regulate pili based and

flagella based chemotaxis (Sampedro et al., 2015), such that each could potentially facilitate a different

chemotactic strategy.

While the literature contains relatively few measurements of the reorientation rate of bacteria freely

swimming in chemical gradients, another way of probing a swimming cell’s chemosensory system is to

tether the cell to a surface by a single flagellum. In such experiments the cell body rotates, rather than

the flagella, allowing one to easily quantify changes in the direction of rotation as the concentration of

chemoeffectors flowing past them changes over time. This technique allows a single cell to be observed

for long periods. However, these types of assays often expose cells to temporal chemical gradients

that are typically much larger than a freely swimming cell would experience in nature (Berg, 2004),

thus they are often used to quantify adaptation of the chemosensory system (Block et al., 1983), rather

than to probe specific chemotaxis strategies. With this caveat in mind, it appears that Bacillus subtilis

responds to relatively weak increases in chemoattractant (asparagine) concentrations by extending runs,

but similar decreases in chemoattractant concentration produce no measurable response (Kirby et al.,

2000). This suggests that swimming B. subtilis, which like E. coli possesses multiple flagella and

performs run-tumble chemotaxis, also employs an optimistic response to generate chemotaxis. While

an optimistic response remains to be verified in free-swimming B. subtilis, this finding is interesting

because the molecular systems that regulate chemotaxis in B. subtilis and E. coli have major structural

differences (Garrity & Ordal, 1995).

Swimming bacteria do not appear, however, to universally use an optimistic strategy to generate

chemotaxis. The phytosynthetic bacterium Rhodobacter sphaeroides uses a single flagellum to navigate

chemical gradients and possesses a comparatively complex signal transduction system, with multiple

homologues of the set of chemosensory proteins within E. coli (Wadhams & Armitage, 2004; Porter

et al., 2008). Interestingly, R. sphaeroides’s single flagellum rotates only in one direction and chemo-

taxis generated using a ‘run-stop’ behaviour, where stopped cells slowly change their orientation before

resuming another run. Tethered cell assays suggest that the main way that R. sphaeroides climbs gradi-

ent is by increasing its probability of stopping when moving down chemoattractant gradient, which is

indicative of a pessimistic response (Packer et al., 1996). This species exhibits a similar response to the

reduction in light intensity, which also allows it to perform phototaxis (Berry & Armitage, 2000).

Taken in whole, it tentatively appears that three major models of swimming bacterial chemotaxis,

E. coli, P. aeruginosa, and B. subtilis, sharply change their swimming direction using an optimistic

strategy, whilst R. sphaeroides employs a strategy pessimistic strategy to regulate when it stops. In

contrast, surface attached P. aeruginosa biofilm cells chemotax using a pessimistic strategy to regulate

reversals in their movement direction (Oliveira et al., 2016).

Our model reveals the inherent trade-offs of different chemotaxis strategies and suggest how char-

acteristics of the nutrient environment might select how bacteria regulate their movement. Our results

show that an optimistic chemotactic response allows a population to generate both a larger chemotac-
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tic drift and larger diffusivity compared with those that employ a pessimistic response. We therefore

posit that an optimistic strategy is favoured in highly dynamic environments where there are significant

benefits to rapidly find and exploit transient nutrient patches before they dissipate (Taylor & Stocker,

2012; Grünbaum, 2002). Conversely, we find that pessimistic cells can more tightly aggregate where

the concentration of nutrients is largest because this strategy allows chemotactic drift to dominate cell

diffusion. We propose that pessimistic strategies are favoured in more stable environments where nu-

trient gradients are long lived, such that cells that can better maintain their position where nutrients are

most abundant will have an advantage.

The predictions from our model are in general agreement with empirical observations. Swimming

cells are exposed to highly dynamic nutrient landscapes because localized hotspots of a nutrient are

rapidly dissipated by molecular diffusion and fluid flow (Fig. 8a, Taylor & Stocker (2012)). This

suggests that swimming cells would benefit from an optimistic strategy because it better equips them to

find and climb chemical gradients before they dissipate, owing to their larger diffusion and chemotactic

drift than pessimistic cells. In contrast, biofilms generate very thin and stable nutrient gradients because

nutrient diffusion and consumption balance one another at the surface of a biofilm, such that only the

cells at outer edge of a biofilm are metabolically active (Fig. 8b). For example, it has been found that

only cells on the outside ≈ 50µm of P. aeruginosa biofilms are actively respiring (Werner et al., 2004).

Thus, the distribution of nutrients within a biofilm would exert a strong selection pressure for cells

that can maintain their position within this thin nutrient boundary layer, suggesting that biofilm cells

might benefit from a pessimistic chemotactic strategy. While the chemotactic strategies of relatively

few species has been quantified thus far, it is intriguing that swimming bacteria appear to largely adopt

an optimistic strategy (Berg & Brown, 1972; Kirby et al., 2000; Berg, 2004), whilst biofilm cells appear

to use a pessimistic strategy (Oliveira et al., 2016).

Bacteria use a variety of different mechanisms to change their direction: our model can be used

to understand how these differentially affect population level statistics. Species with multiple flagella

often exhibit run and tumble behaviour, but with some degree of correlation in the direction between

subsequent runs (Berg & Brown, 1972). In contrast, pili based motility and cells that swim with only

one flagella typically exhibit run-reverse behaviour (Cai et al., 2016; Oliveira et al., 2016). Here we

parameterize these different reorientation strategies using positive and negative values of persistence,

respectively. Our results indicate that run-reverse behaviour of biofilm cells may offer an advantage over

run-tumble behaviour because they can tightly aggregate where the nutrients are most abundant. This

is because negative persistence reduces the diffusivity but does not alter the chemotactic drift. Future

studies many also be able to extend the framework presented here to shed additional light how the run-

stop behaviour employed by R. sphaeroides or the ‘flick’ behaviour exhibited by Vibrio alginolyticus,

which generates 90 degree turns (Son et al., 2016), affects their population level statistics.

Bacteria exhibit a very wide range of motility speeds: marine bacteria have been observed to swim

at much faster speeds than enteric bacteria, which in turn move three orders of magnitude faster than

biofilm bacteria (Stocker et al., 2008; Oliveira et al., 2016). In this study, we have made an initial

attempt to explore how speed affects chemotaxis. We have shown that, when diffusivity is a function

of the magnitude of the chemical gradient, the chemotactic accumulation is a non-linear function of

speed and it depends on the bacterial strategy, but this behaviour cannot be explained using current

linear models of chemotaxis. Recent experiments have demonstrated that chemotactic accumulation is

speed dependent and this occurs due to an interesting correlation between reorientation frequency and

swimming speed (Son et al., 2016). The mathematical framework presented here could provide further

insight into the link between individual-level behaviour and chemotactic accumulation. We have also
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FIG. 8. Swimming and biofilm bacteria experience markedly different chemical gradients in their respective habitats, which
may select for disparate chemotactic strategies. (a) Swimming cells navigate along transient gradients of chemicals that freely
diffuse through liquids. In the absence of flow, a point source of a chemoattractant (e.g. a lysing phytoplankton cell Smirga et al.

(2016)) will create a distribution that continuously increases in size like LS ≈ (DMτ)1/2, where DM is the molecular diffusion
coefficient of the chemoattractant (order 10−9m2s−1 for small molecules), and τ is the elapsed time. However, in practice the
distribution of chemoattractant is typically stirred by fluid flow, which tends to sharpen gradients making them more susceptible
to irreversible mixing by molecular diffusion (Taylor & Stocker, 2012). Swimming cells must therefore accumulate in ephemeral
chemoattractant sources before they are dissipated by mixing, which likely favours chemotactic strategies that confer the ability
to rapidly traverse gradients (Taylor & Stocker, 2012; Grünbaum, 2002). (b) Biofilm cells live in densely packed assemblages
where limiting nutrients diffuse through the fluid-biofilm interface, where they are immediately consumed. A balance between

diffusion and consumption thus generates steep and stable chemical gradients with thickness LB ≈
√

c0DBY α−1, where c0 is
the chemoattractant concentration at biofilm’s surface, DB is the diffusion coefficient of the chemoattractant in the biofilm, α is
the bacterial growth rate, and Y the yield with which cells convert the nutrient to biomass (Pirt, 1967; Coyte et al., 2017). The
thickness of this chemical boundary layer is LB ≈ 50µm, and typically cells beneath this thin layer cells are not metabolically
active (Werner et al., 2004). We posit that the nutrient landscape within biofilms favours chemotactic strategies that allow cells to
tightly aggregate within this thin and stable nutrient boundary layer.
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demonstrated how the framework can be extended to capture orthotaxis recently observed in surface

attached P. aeruginosa, although in this context orthotaxis appears to contribute less to the drift of cells

along gradients when compared to the chemotactic drift driven by modulation of their reversal rate.

There are many possible additional extensions to the mathematical framework presented here. First,

our chemotactic model does not explicitly incorporate temporal integration of the chemical signal, nor

have we included the effects of Brownian rotational diffusion. Both are considered by Locsei (2007)

who demonstrated that even for a weak chemotactic response, persistence can impact the chemotactic

drift, which is an effect not observed in our model. Second, while the signal transduction systems

that regulate chemotaxis have been characterised for only a few species, an explicit model of these

pathways (e.g. Xue, 2015; Erban & Othmer, 2005; Xue & Yang, 2016) could be integrated into our

model of strong chemotaxis to shed additional light how regulatory systems have evolved to optimise

behaviour. Third, in this study we posit the spatio-temporal dynamics of the chemoattractant field

within a bacteria’s environment may shape its chemotactic strategy, but it would be interesting to directly

couple the governing equations that describe distributions of cell position and orientation with those that

describe the transport of the chemoaffectors (Hein et al., 2016; Taylor & Stocker, 2012). Such a coupled

model might facilitate deeper understanding of how different chemical landscapes select for different

chemotactic strategies. Fourth, the movement of both swimming and biofilm bacteria can be affected by

flow (Bearon, 2003; Bearon & Hazel, 2015; Locsei & Pedley, 2009; Shen et al., 2012), which may also

exert an additional selection pressure for cells to co-opt a particular movement strategy. Future studies

may be able to determine how chemotactic drift and diffusion are affected by the reorienting effects of

fluid shear.

In conclusion, this study reveals the trade-offs of different chemotactic strategies, providing a new

framework through which to interpret empirical observations. Many previous studies have focused

on how the chemotactic response of E. coli optimizes nutrient acquisition (e.g. Celani & Vergassola,

2010; Kollmann et al., 2005), but bacteria possess different forms of motility and live in many diverse

environments which have the potential to select for a variety of different behaviours. Technological

advances, such as microfluidic experiments (Cai et al., 2016; Oliveira et al., 2016) and holographic

microscopy (Molaei et al., 2014), hold significant promise to rapidly quantify the strategies that mediate

bacterial chemotaxis in different genotypes, allowing us to expand our knowledge beyond just a few

model species. Such comparative studies, when combined with mathematical models like that presented

here, may ultimately allow us to resolve unifying principles that diverse species of bacteria use to exploit

their habitats. Understanding the fundamental processes that structure bacterial communities has the

potential to shed new light on how these communities function in nature, medicine, and industry, as

well as potentially give us new tools to manipulate them to our advantage.
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A. Expansion solution for ψ

To obtain the leading order solution for ψ(0) for weak chemotaxis, we consider a Fourier series expan-

sion (Hillen & Othmer, 2000):

ψ(0) = ∑
k

a
(0)
k (y, t)coskθ +b

(0)
k (y, t)sinkθ , (A.1)

and consider the class of turn kernels, K(θ ,θ ′) = h(|θ −θ ′|), where h is a sufficiently smooth function.

We define the following moments of the turn kernel:

αk = 2

∫ π

0
cos(ku)h(u)du, (A.2)

noting that α = α1 is the index of persistence as defined as the mean cosine of the turn angle (Lovely

& Dahlquist, 1975; Othmer & Xue, 2013). If tumbles reorientate cells randomly, such that their new

swimming direction is uncorrelated to their previous one, the index of persistence is zero. In contrast, if

tumbles change a cell’s swimming direction only slightly, so that they move in nearly the same direction

after tumbling, the index of persistence would tend towards one.

From equation (2.26), using standard trigonmetric identities, periodicity and noting sin(ku)h(|u|) is

an antisymmetric function which will integrate to zero, we obtain the result that

∑
k

a
(0)
k (y, t)coskθ +b

(0)
k (y, t)sinkθ =

∫ π

−π
h(|θ −θ ′|)

(

∑
k

a
(0)
k (y, t)coskθ ′+b

(0)
k (y, t)sinkθ ′

)

dθ ′,

= ∑
k

αk

(

a
(0)
k (y, t)coskθ +b

(0)
k (y, t)sinkθ

)

.
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As α0 = 1, the θ independent (k = 0) terms agree. For k > 0, provided αk 6= 1 (corresponding to a cells

which changes its movement direction), we obtain the result that ak(y, t) = bk(y, t) = 0. We therefore

obtain the solution

ψ(0)(y,θ , t) = a0(y, t). (A.3)

As we define n(0)(y, t) =
∫ π
−π ψ(0)(y,θ , t)dθ , we thus obtain the required result:

ψ(0)(y,θ , t) =
1

2π
n(0)(y, t). (A.4)

For strong chemotaxis, we consider the following expression for ψ(0) :

ψ(0) = f (θ)

(

∑
k

c
(0)
k (z, t)coskθ +d

(0)
k (z, t)sinkθ

)

, (A.5)

where f is the steady distribution given by equation (2.36). Inserting this expansion into equation (2.43)

we obtain:

∑
k

c
(0)
k (z, t)coskθ +d

(0)
k (z, t)sinkθ =

∫ π

−π
h(|θ −θ ′|)

(

∑
k

c
(0)
k (z, t)coskθ ′+d

(0)
k (z, t)sinkθ ′

)

dθ ′,

= ∑
k

αk

(

c
(0)
k (z, t)coskθ +d

(0)
k (z, t)sinkθ

)

.

As for the weak chemotaxis case, for cells which undergo changes in direction, we obtain the result that

for k > 0, c
(0)
k (y, t) = d

(0)
k (y, t) = 0 and hence

ψ(0)(z,θ , t) = f (θ)n(0)(z, t). (A.6)

To obtain the solution for ψ(1), we propose the following expression for λ (θ)ψ(1)(z,θ , t):

λ (θ)ψ(1) =−λ (θ) f (1)(θ)
∂n(0)

∂ z
+∑

k

c
(1)
k (z, t)coskθ +d

(1)
k (z, t)sinkθ . (A.7)

where f (1)(θ) is a smooth periodic function which satifies equations (2.47, 2.48).

Inserting this expansion into equation (2.45) yields

∑
k

c
(1)
k (z, t)coskθ +d

(1)
k (z, t)sinkθ =

∫ π

−π
h(|θ −θ ′|)

(

∑
k

c
(1)
k (z, t)coskθ ′+d

(1)
k (z, t)sinkθ ′

)

dθ ′,

= ∑
k

αk

(

c
(1)
k (z, t)coskθ +d

(1)
k (z, t)sinkθ

)

.

As in the previous calculations, for cells which undergo changes in direction, that is for k > 0, αk 6= 1,

we obtain the result that for k > 0, c
(1)
k (y, t) = d

(1)
k (y, t) = 0. On taking the first moment of ψ(1) we

obtain the expression

n(1)(z, t) =
∫ π

−π
ψ(1)dθ =−

∂n(0)

∂ z

∫ π

−π
f (1)(θ)dθ + c

(1)
0

∫ π

−π

1

λ
dθ . (A.8)
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Using equation (2.48), we thus obtain the following expression for c
(1)
0 :

c
(1)
0 =

n(1)
∫ π
−π

1
λ (θ)dθ

. (A.9)

From equation (A.7), we hence obtain the required result that

ψ(1) = − f (1)(θ)
∂n(0)

∂ z
+ f (θ)n(1) (A.10)

where f is the steady distribution given by equation (2.36).

B. Derivation of moment equations

We here explain how to obtain equations (2.23, 2.24) which relate the first three moments of ψ: n(y, t) =
∫ π
−π ψ(y,θ , t)dθ , j(y, t) =

∫ π
−π sinθψdθ and Q(y, t) =

∫ π
−π sin2 θψdθ , in the case of weak chemotaxis.

We first consider the non-dimensional conservation equation for ψ for weak chemotactic response,

equation (2.19):

ε2 ∂ψ

∂ t
+ ε

∂

∂y
(sinθψ)+(1− εχ sinθ)ψ

−
∫ π

−π
(1− εχ sinθ ′)K(θ ,θ ′)ψ(θ ′)dθ ′ = 0.

The zero moment, that is integrating this equation over θ , gives equation (2.23):

ε2 ∂n

∂ t
+ ε

∂ j

∂y
= 0.

Here we used the result that
∫ π
−π K(θ ,θ ′)dθ = 1, i.e. after tumbling a cell must move in some direction,

to eliminate the tumble terms.

To obtain the first moment, equation (2.24), requires some intermediary calculations similarly to that

found in the above appendix A. Specifically, we can obtain the result that for turn kernels of the form

K(θ ,θ ′) = h(|θ −θ ′|), we have that

∫ π

−π
sinθK(θ ,θ ′)dθ = sinθ ′α. (B.1)

where α is the index of persistence as defined by α1 in equation (A.2). The first moment, that is

integrating equation (2.19) multiplied by sinθ over θ thus gives equation (2.24):

ε2 ∂ j

∂ t
+ ε

∂Q

∂y
+(1−α) j− ε(1−α)χQ = 0. (B.2)

C. Calculation of f (1)

Equation (2.47) is a Fredholm integral equation of the second kind for the composite function λ f (1).

The equation only specifies λ f (1) up to an arbitrary constant, as
∫ π
−π K(θ ,θ ′)dθ ′ = 1. The arbitrary
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constant is found by specifying
∫ π
−π f (1)dθ = 0. In the case of isotropic tumbles, the solution can be

found analytically and is discussed in section 3.2. For more general expressions for the turn kernel,

numerical methods were used. Specifically, we used a composite left one-point quadrature method

with uniform subintervals to obtain an initial estimate for λ f̃ 1, and then chose a suitable normalisation

constant C1 to ensure
∫

f (1)dθ = 0:

f 1 =
˜λ f 1 +C1

λ
. (C.1)

Implementation in Matlab was based on Atkinson & Shampine (2008). To verify this numerical scheme

we compared with the analytic results obtained for isotropic tumbles and found the results were indis-

tinguishable with a uniform grid for θ of size 512.
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