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Abstract

Most bacteria live attached to surfaces in densely-packed communities. While new experi-

mental and imaging techniques are beginning to provide a window on the complex pro-

cesses that play out in these communities, resolving the behaviour of individual cells

through time and space remains a major challenge. Although a number of different software

solutions have been developed to track microorganisms, these typically require users either

to tune a large number of parameters or to groundtruth a large volume of imaging data to

train a deep learning model—both manual processes which can be very time consuming for

novel experiments. To overcome these limitations, we have developed FAST, the Feature-

Assisted Segmenter/Tracker, which uses unsupervised machine learning to optimise track-

ing while maintaining ease of use. Our approach, rooted in information theory, largely elimi-

nates the need for users to iteratively adjust parameters manually and make qualitative

assessments of the resulting cell trajectories. Instead, FAST measures multiple distinguish-

ing ‘features’ for each cell and then autonomously quantifies the amount of unique informa-

tion each feature provides. We then use these measurements to determine how data from

different features should be combined to minimize tracking errors. Comparing our algorithm

with a naïve approach that uses cell position alone revealed that FAST produced 4 to 10 fold

fewer tracking errors. The modular design of FAST combines our novel tracking method

with tools for segmentation, extensive data visualisation, lineage assignment, and manual

track correction. It is also highly extensible, allowing users to extract custom information

from images and seamlessly integrate it into downstream analyses. FAST therefore enables

high-throughput, data-rich analyses with minimal user input. It has been released for use

either in Matlab or as a compiled stand-alone application, and is available at https://bit.ly/

3vovDHn, along with extensive tutorials and detailed documentation.

Author summary

Much of what we know about bacterial behaviour comes from tracking solitary cells

through space and time. For example, one can unpick the mechanisms that drive chemo-

taxis by quantifying the movement of individual microbes as they respond to a nutrient
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source. However, in infections, industrial processes and the environment, bacteria usually

live in tightly-packed communities where they display unique behaviours not observed in

solitary cells, such as the activation of contact-dependent weapons to kill their neighbours.

Tracking individuals in these dense assemblages is technically challenging because it is dif-

ficult to follow cells using only their position in each frame. Here we present a new soft-

ware tool called FAST which combines machine learning and information theory to

optimise cell tracking. Our approach uses a range of different cell characteristics such as

shape and fluorescent intensity to better distinguish individuals over time, reducing errors

up to 10-fold compared to traditional approaches. In addition, FAST estimates how track-

ing accuracy changes over time, alerting users to potential problems such as out of focus

frames. By tracking cells in a diverse range of conditions with minimal user input, FAST

provides a new quantitative platform to study how bacteria have adapted to live in groups.

Introduction

Time-lapse microscopy and automated cell tracking has led to many fundamental advances in

our understanding of how microorganisms sense and respond to their environment. While

many studies have focused on the movement of planktonic bacteria at relatively low densities,

many behaviours—including collective movement [1,2], combat [3], sharing of public goods

[4] and genetic exchange [5]—typically only occur in the closely-packed assemblages in which

most microbes live [6,7]. These dense communities are often studied in the laboratory using

confluent monolayers of cells, which are much easier to image than three-dimensional aggre-

gations. One method to generate such monolayers is to confine cells with a slab of agarose or

polyacrylamide to form an interstitial colony [1,8–12], while more advanced microfluidic tech-

niques [13] can also be used to confine cells to a single plane while allowing for more precise

control over their chemical environment (Fig 1A). Monolayers can also form in thin films of

fluid, including those arising naturally during bacterial swarming motility [2] and in assays

used to study mixing induced by flagellar motility [14]. Regardless of the origin of the mono-

layer however, investigators face the same technical challenges when tracking densely packed

cells using phase-contrast, brightfield and/or epi-fluorescence microscopy (Fig 1B).

Tracking solitary cells at low density is relatively straightforward, and basic tracking algo-

rithms that use cell position alone often produce excellent results. However, tracking cells that

are densely packed together is notoriously difficult because the spacing between neighbouring

cells becomes similar to the distance cells move between frames. These problems are exacer-

bated by cell motility. While some species of bacteria are non-motile at high density and spread

slowly only via cell division and the secretion of surfactants [9,13], emergent patterns of collec-

tive motility driven by twitching [1], swarming [2] and gliding [15] further complicate tracking

by rapidly changing the positions of cells. Consequently, dense, motile communities must be

imaged at high framerates for tracking to be feasible, such that a typical experiment requires a

timeseries of hundreds or thousands of images. The large size of imaging datasets, combined

with the large number of cells within each image, means that the computational time required

for cell tracking is often one of the main bottlenecks in a researcher’s workflow. This can be

compounded if tracking must be repeated multiple times to optimise tracking parameters.

A basic nearest-neighbour tracking algorithm compares the coordinates of cell centroids

between subsequent frames and builds trajectories by connecting those centroids that are clos-

est together between subsequent time points. More advanced algorithms leverage additional

cell characteristics or ‘features’ to distinguish cells from one another, including metrics that
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Fig 1. Analysis of high-density datasets using FAST’s modular framework. (A) While bacteria naturally form

monolayers in some environments, a number of different assays are used to physically confine cells to a plane in

laboratory experiments. Among these are interstitial colonies, microfluidic devices that trap cells between two solid

boundaries, and experimental assays that confine cells to a thin film of liquid. (B) These experiments are typically imaged

using automated microscopy systems capable of collecting images in both transmitted light and fluorescent channels at

specified time points. (C) FAST analyses these imaging datasets in six separate modules, each of which is used in sequence

(see S1 Text). A complete specification of each module is provided in section 3 of S1 Text.

https://doi.org/10.1371/journal.pcbi.1011524.g001
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measure cell shape, orientation, fluorescence levels and patterns of previous movement

[16–19]. However, incorporating these additional feature measurements introduces a new

problem, namely how to efficiently combine the information from different features to opti-

mise tracking performance. In some software packages (e.g. MicrobeJ [17]), this requires the

user to manually choose a large number of parameters and make qualitative judgements of the

trajectories that result from each set of parameters. The combinatorial explosion in the num-

ber of possible parameters, the fact that a single parameter set can require hours to test, and

the lack of a rigorous way to compare tracking results across different parameter sets, means

that parameter optimisation in such a tracking algorithm is typically a highly iterative, time-

consuming process.

A related problem is the fact that properties of bacteria within collectives are highly

dynamic, changing at both the individual level and population level over time. For example,

fluorophores can accumulate within cells or bleach, while cell movement can speed up or slow

down due to the secretion of extracellular factors or changes in gene expression [20,21]. In

addition, the overall density of cells often increases over time as a result of cell division. This

variability means that an algorithm optimised to track cells at the beginning of an experiment

might struggle at later timepoints. Furthermore, experimental issues—such as changes in illu-

mination, focus, or shifts in the field of view caused by thermal drift—can cause an abrupt

deterioration of tracking accuracy. Knowing when tracking accuracy has deteriorated to an

unacceptable level often lacks a rigorous basis and requires the output of tracking software to

be carefully validated by eye, which is typically infeasible for high-throughput datasets.

In this paper, we discuss a new approach that uses unsupervised machine learning to

improve the fidelity of tracking. Our system automatically measures the statistical properties

of each feature over time and then uses this data to dynamically change the relative weighting

of each feature based on the information it can contribute to solving the tracking problem. It

also provides users with a metric of the expected accuracy of the resulting cell trajectories,

alerting them to sections of datasets that may need to be omitted from subsequent analyses.

This tracking algorithm is combined with robust segmentation, feature extraction, lineage

analysis and visualisation routines to make up FAST, the Feature-Assisted Segmenter/Tracker.

FAST has been released as open-source software which can be run either directly within

Matlab or as a stand-alone application, and has already been used in a number of publications

to accurately analyse densely-packed bacterial monolayers [1,10,22,23].

In the following sections, we discuss the design approach and general structure of FAST,

and then illustrate the utility of our novel cell tracking approach using synthetic datasets. Next,

we discuss three case studies that illustrate the versatility of FAST, including: 1) lineage analysis

of E. coli microcolonies, 2) tracking of twitching P. aeruginosa cells in a 2D monolayer, and 3)

automated analysis of the Type 6 Secretion System (T6SS) in a co-culture of P. aeruginosa and

V. cholerae. While these case studies focus on densely packed bacteria, FAST can also be used

to analyse other types of biological samples (e.g. Fig Ag-i in S1 Text).

Results

Software overview

Initially, we conducted a review of existing cell tracking software packages [17,24–28] to estab-

lish four key design objectives for our software: modularity, rapid user feedbacks, minimisa-

tion of user-defined parameters and extensibility (see section 2 of S1 Text for further details).

We built the FAST pipeline following these design principles, resulting in a set of six modules

that are used in sequence (Fig 1C). If required, external tools can be used to pre-process time-

lapse images—for example, to stabilise or bleach correct images—before importing them into
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FAST. Imaging data is loaded into FAST using Bioformats [29], ensuring compatibility with a

diverse range of imaging formats. The first module of FAST is the Segmentation module,

which uses standard image processing methods—including texture detection, ridge detection

[30] and a watershed algorithm [31]—to identify the boundaries of individual cells. While this

is typically based on brightfield or phase-contrast images, fluorescent images can also be used

if cells are appropriately labelled with cytosolic or membrane-bound fluorophores. Next, the

Feature Extraction module measures a range of different cell properties such as position, size

and fluorescent intensity (potentially in multiple channels) using the previously extracted seg-

mentation as a basis. The Tracking module employs our machine learning process to quantify

the information associated with each feature and then calculates the relative weighting of each

feature to maximise tracking fidelity. If required, a manual validation and correction sub-mod-

ule also allows the user to correct any mistakes made by the tracking algorithm. The optional

Division Detection module uses a closely related machine learning process to assign daughter

cells to mother cells following cell division events. Two separate modules can finally be used to

visualise the output of FAST: the Overlay module plots trajectories and/or the results of analy-

ses over the top of the original images, while the Plotting module contains a range of different

options to visualise extracted data. A comprehensive description of each of these modules is

provided in section 3 of S1 Text.

The FAST GUI guides the user through the process of analysing a single dataset. However,

many applications require a large number of imaging datasets to be analysed using consistent

settings. To automate this, we have implemented a batch-processing tool called doubleFAST.

Once a user has performed an analysis on a single dataset using the FAST GUI, doubleFAST

can then read the settings used during this initial run and automatically apply them to any

number of additional datasets. This allows data from multiple experiments to be processed

with minimal amounts of additional user input and ensures each has been analysed using con-

sistent settings.

Finally, we have implemented a post-processing toolbox, which contains scripts and func-

tions to perform a number of different tasks on FAST’s output. These allow, among other

things, conversion of track data to other file formats, automated detection of different geno-

types, and the annotation of events such as reversals in movement direction. Users of FAST

can suggest new additions to this toolbox so they can be used by the wider community.

FAST’s tracking algorithm

One of FAST’s principal innovations is its tracking algorithm, which automatically determines

how to best combine data from a variety of different cell features to improve tracking fidelity.

Although previous tracking software packages have had the option to incorporate cell charac-

teristics other than position in their tracking routines [16,19], FAST uses a conceptual frame-

work based on information theory that optimises this process, increasing both the power and

convenience of this approach. In this section we provide a high-level overview of our main

innovations and how they impact the tracking process. For more detailed derivations and

explanations, please refer to section 3.4 of S1 Text.

Our approach to the tracking problem is based on measurement of the amount of informa-

tion that can be used to assign links between objects in subsequent frames, a measurement we

call the ‘trackability’. This trackability score provides an integrated measure of how accurately

we can follow objects from frame to frame, and due to its grounding in information theory has

certain desirable properties such as the additivity of contributions from statistically indepen-

dent features [32,33]. Measuring the trackability over time therefore provides users with a tool

to predict when tracking will be stable and robust, as well as flagging portions of a dataset that
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might yield spurious trajectories. We define trackability in the following paragraphs and then

illustrate how this metric is used in practice in our first and second case studies.

We begin by assuming that N different features are measured for each object. An object’s

features can be expressed as a vector xi
t with N elements, where the object index is denoted as i

and time is denoted as t. Changes in an object’s features over time—corresponding to, for

example, translational movement or changes in fluorescent intensity—therefore generate a tra-

jectory through the N-dimensional feature space. The goal of our tracking algorithm is to

reconstruct each object’s trajectory from the cloud of individual data points resulting from the

segmentation and measurement of objects in each image. As previously noted, individuals in

high-density and high-motility systems can easily move further than the typical cell-cell sepa-

ration between frames, making it difficult to reconstruct their trajectories from positional

information alone. By including additional features in the tracking framework, we expand the

feature space from these two spatial dimensions to N feature dimensions, creating new axes

along which one can potentially discriminate neighbouring individuals from each other.

The trackability metric provides an estimate of how distinguishable trajectories are from

each other in the feature space, and therefore how accurate tracking is likely to be. Unpredict-

able movement of objects tends to reduce trackability, while trackability increases if the fea-

tures sample a wider range of values (i.e. if they have a larger dynamic range). To formalise

this, we model an object’s instantaneous position in feature space as the random vector Xt and

the change in this position between subsequent images as the random vector ΔXt. The distribu-

tion f(x) is then the probability density function (PDF) representing the chance of finding a

randomly selected object at a particular position x in the absence of additional information

(specifically, the position of the object at prior timepoints), while the distribution f(Δx) repre-

sents the stochastic change in an object’s position in feature space between sequential time-

points. We estimate f(Δx) by assuming that the motion of an object through feature space can

be modelled as a Gaussian random walk. Explicitly, we assume that the feature vector xi
tþ1

of

an object at frame t+1 can be written in terms of its prior feature vector xi
t as:

xi
tþ1
¼ xi

t þ DXt; ð1Þ

where ΔXt is modelled as a multivariate normal N ðμtðDxÞ;StðDxÞÞ, and μt(Δx) and St(Δx) are

respectively the mean vector and covariance matrix of the set of frame-frame feature displace-

ments {Δxt}. We can similarly characterize f(x) using the covariance matrix of the raw object

locations, St(x). While we can estimate St(x) directly from static snapshots as the covariance

of the set of feature vectors {xt}, resolving {Δxt} and subsequently μt(Δx) and St(Δx) requires a

putative set of cell trajectories, which in our algorithm are obtained via a preliminary round of

tracking that uses a simple nearest-neighbour approach. To help ensure these summary statis-

tics are measured accurately, FAST uses only the lowest displacement trajectory links from this

training dataset, which are the ones most likely to be correct. Users specify the fraction F of the

links with the smallest displacements to be used in the calculation of μt(Δx) and St(Δx). This

allows the user to balance the trade-off between larger values of F, which increases the size of

the training dataset, and smaller values of F which increases the quality of the training dataset.

From these measurements, we estimate the amount of information available for assigning

objects between frames by calculating the difference between the entropies for the two distri-

butions, H(X) and H(ΔX) [33,34]. The trackability rt, which is measured in bits/object, can

then be written as:

rt ¼
1

2
log

2

jStðxÞj
jStðDxÞj

� �

þ
N
2
log

2

6

pe

� �

� log
2
no;t

� �
; ð2Þ
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where no,t is the total number of objects present at time t and |�| denotes the determinant of the

contents. The first term captures the balance between the dynamic range of all features (|St(Δx)|)

and the unpredictability of an object’s movement through feature space (|St(Δx)|), while the sec-

ond and third terms rescale this quantity to express the amount of information available to the

tracking algorithm per object. For a further details, including our assumptions about the form of

the underlying statistical distributions, please see section 3.4.2 of S1 Text.

To illustrate the trackability metric, we consider the case of a single object with a single

feature, for example its position in space along a single axis, x (Fig 2A–2C). This simplifies

Fig 2. An information-theoretic framework for automated object tracking. (A) For illustrative purposes, we consider here a theoretical dataset in which an

object is characterised using a single feature, its position along the x-axis. The object’s position at three successive timepoints is denoted x1, x2, x3 (red circles),

while the displacements are denoted Δx1, Δx2 (blue arrows). (B) We assume that feature displacements are drawn from a Normal distribution f(Δx), while the

instantaneous object position (independent of knowledge of other timepoints) is drawn from a separate Uniform distribution f(x). The information content I of

the feature is then calculated as the difference in the entropies of the two distributions, H(X) and H(ΔX), and represents our increase in certainty about the

position of the object at time t+1 given knowledge about its position at time t. The trackability quantifies the total amount of information measured for each

object, which increases when f(Δx) exhibits less variability relative to f(x). (C) Trackability decreases when the distribution of f(Δx) is broader (i.e. the feature

becomes more ‘noisy’). Here the different colours correspond to the different distributions of f(Δx) shown in panel B. (D,E) Illustration of the feature

normalization process for two features. In both D and E, the central plot indicates the joint distribution of a pair of feature displacements, while the left and

bottom plots indicate the corresponding marginal distributions. In D, the random variables representing the unnormalized frame-frame displacements of the

two features—ΔX and ΔY—are correlated and displaced from the origin. Using the joint distribution’s covariance matrix S(Δx) and mean vector μ(Δx), the

feature space is transformed such that the resulting joint distribution of feature displacements f ðDx̂^;Dŷ^Þ is zero-centred and isotropic (E), ensuring that each

feature exhibits an equivalent amount of stochastic variation between frames.

https://doi.org/10.1371/journal.pcbi.1011524.g002
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Eq (2) to:

rt ¼
1

2
log

2

stðxÞ
2

stðDxÞ
2

 !

þ
1

2
log

2

6

pe

� �

; ð3Þ

where σt(x) and σt(Δx) denote the standard deviation of their respective distributions. As

expected, one observes a larger trackability score when the distribution of feature displace-

ments, f(Δx), is more sharply peaked relative to the distribution of f(x) (Fig 2B and 2C). i.e.
when the typical distance an object moves between frames is small compared to the range of

values of x. Intuitively, the precision of tracking will increase as (i) the size of the random fluc-

tuations in feature space decreases, (ii) the number of objects within a frame decreases, and

(iii) the total size of the feature space the objects occupy (i.e. their dynamic ranges) increases.

By taking these multiple factors into account, rt represents an integrated measurement of the

risk that a given object will be incorrectly linked to a different object in a subsequent frame.

In addition to calculating the trackability, μt(Δx) and St(Δx) are also used to perform what

we call ‘feature normalization’. This transformation converts the raw feature space x to a nor-

malized feature space x̂ with a corresponding displacement distribution f ðDx̂Þ that is isotropic

and zero-centred (Fig 2D and 2E), thus ensuring that the stochastic variation observed within

each component of x̂ is equal and that any predictable motion in the feature space (e.g. a grad-

ual increase in cell length due to growth, or a reduction in fluorescent intensity due to photo-

bleaching) is accounted for. The metric of this transformed space is the Mahalanobis distance,

a dimensionless measure of how reliably we can predict where an object will appear in the fea-

ture space at the next time point under the assumptions of our statistical framework. By pro-

viding an equitable way to combine data from different features together, this metric allows us

to more accurately distinguish correct from incorrect putative links. Large distances between

sequential timepoints in this space indicate a discrepancy between the predicted and observed

location of an object in the next frame, and so suggest that the input data must be erroneous—

for example, because an object was mis-segmented in a single frame. In contrast to previous

approaches where feature weightings have to be selected or measured manually [16], feature

normalization allows one to automatically optimise the contribution of multiple features with-

out any additional user input.

Finally, we use these statistical measurements to also calculate the adaptive tracking thresh-

old βt, which automatically adjusts the stringency of the algorithm that links objects together

based on how much information is available in each frame. While a larger fraction of putative

links are accepted when information is relatively plentiful, only the highest certainty links are

accepted when information is more limited. This dynamic adjustment of the link threshold

thus allows FAST to maximise the number of trajectories in less challenging tracking condi-

tions (e.g. slow-moving cells at low density) while minimizing the number of spurious links in

more challenging conditions (e.g. fast-moving cells at high density). As different imaging data-

sets may require a different balance between maximising the number of correct links and min-

imising the number of spurious links, users select a static threshold P to balance this trade-off,

which FAST then automatically converts to the time-varying threshold βt based on the instan-

taneous amount of information available.

In summary, users must specify the tracking threshold P, the fraction of training links to

retain F and the features that should be included in the final round of tracking. To help users

optimise these parameters quickly, the Tracking module contains built-in tools that allow

users to objectively assess tracking quality on a single pair of frames before committing to pro-

cessing the entire dataset.
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Validating the methodology of FAST using ground-truthed datasets

To demonstrate the functionality of our tracking algorithm and to illustrate how using multi-

ple features can enhance accuracy, we used a previously described self-propelled rod (SPR)

model [1,35] to generate synthetic datasets that simulate bacteria collectively moving at high-

density (Fig 3A). In these simulations, cells are modelled as stiff, mutually repulsive rods that

are propelled by a constant force (see Methods). This model has been shown to closely approx-

imate bacterial collectives that propel themselves using either flagella or type IV pili, where ste-

ric interactions between neighbouring cells generate complex emergent collective behaviours

[1,35]. Importantly, this approach allows us to independently control each of the different

properties of the system, allowing us to both test FAST on a very large number of qualitatively

different datasets and to objectively assess its performance using an automatically generated

ground truth.

We simulated a 2D monolayer of cells constitutively expressing a fluorescent protein by

initialising populations of cells whose length and fluorescent intensity were drawn from distri-

butions obtained from experimental data (S1 Fig). Following initialization, we simulated cell

movement by numerically integrating the equations of motion for each rod. Once the system

had reached steady-state, we extracted measurements of rod position, orientation, fluorescence

and length at evenly spaced timepoints. To simulate noisy measurements, we added Gaussian

noise to each of these features, with the noise magnitude based on that observed in real experi-

mental data (Fig 3B, Methods).

Rather than specialising on datasets with specific properties, FAST’s tracking algorithm is

designed to be robust to a wide diversity of different conditions by automatically compensat-

ing via feature normalization. To test this capability, we varied the parameters of our simula-

tion by adjusting the rod density, self-propulsion force and framerate, as well as the accuracy

of feature measurement by adjusting the amount of noise in the measured cell position, length

and fluorescent intensity (Table 1). We tested five different values for each of these six parame-

ters, yielding a total of 30 datasets.

The performance of the tracking algorithm was assessed by comparing its output to the

ground truth (Fig 3C and 3D). Links that were present in the ground truth but missing in the

reconstructions were scored as false negatives (FN), while those that were absent in the ground

truth but present in the reconstructions were scored as false positives (FP). Links that were

identical in both were scored as true positives (TP). We now integrated these measurements

into a single metric that quantifies tracking performance, the F1-score, defined as:

F1 ¼
2 TP

2 TP þ FN þ FP
: ð4Þ

Users of FAST specify a tracking threshold that controls the stringency of the linking pro-

cess. If this threshold is too stringent, too many correct links will rejected by the algorithm,

while if the threshold is not stringent enough too many incorrect links will be accepted. In

practice, users need the ability to choose the tracking threshold that best suits their needs—for

example, users interested in detecting very rare events will have different requirements than

those interested in measuring average cell behaviour. However, for the purpose of testing the

benefits of our automated tracking algorithm, we removed the tracking threshold as a factor

from our analyses by using the threshold that resulted in the largest the F1-score for each data-

set (Fig 3E). This maximum F1-score is an objective measure of the performance of our track-

ing algorithm across datasets with different characteristics, and also allows us to robustly

benchmark our tracking algorithm.
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Fig 3. Validating FAST using synthetic data from a simulation of collective bacterial motility. (A) We used a self-propelled rod

(SPR) model to generate noisy datasets with a verified ground truth. We then performed cell tracking with FAST using either only a

single feature (the rod’s centroid at sequential timepoints; brown) or using a suite of different features (rod centroid, length, orientation

and simulated fluorescent intensity; purple). Comparison of the reconstructed trajectories from FAST (B) with the ground truth data

(C) allowed us to identify the errors made by the tracking algorithm (D). Errors were split into two categories: links made between
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The simulated datasets were tracked using two different methods (Fig 3B). The first method

only used the position of the rods—effectively a classical position-based tracking approach

(‘Centroids’), while the second method used all four features—position, orientation, length

and fluorescent intensity (‘All features’). We found that including all features led to a dramatic

increase in tracking accuracy in all datasets, with a 4 to 10-fold reduction in the number of

tracking errors (S2 Fig). Furthermore, our groundtruthed datasets allow us to directly relate a

dataset’s trackability to the accuracy of the resulting tracks, which demonstrated that it is an

excellent predictor of the F1-score regardless of the simulation parameters or level of noise in

the dataset (Fig 3F).

Taken together, these analyses validate our methodology and illustrate how FAST copes

with challenging datasets. First, they demonstrate that our method of integrating additional

feature information during tracking is reliable and effective, allowing FAST to substantially

reduce tracking errors compared to alternative approaches that use cell position alone. Second,

these analyses demonstrate that our trackability score can integrate multiple aspects of the

dataset into a single, robust heuristic of predicted tracking accuracy.

Case studies

Tracking cells, divisions, and lineages in growing non-motile E. coli colonies. A major

aim of a number many previous tracking packages is to automatically reconstruct cell lineages

objects that were incorrect (‘false positives’, solid magenta lines), and links between objects that were missed (‘false negatives’, dashed

magenta lines). We also calculated the number of correct links made in each case (‘true positives’, solid orange lines). From these counts,

we evaluated the performance of the tracking algorithm by calculating the F1-score (main text). (E) The value of this F1-score depends

on a user-defined parameter, the tracking threshold. To objectively compare the results from the tracking algorithm when run on

datasets with different properties, we calculated the tracking threshold that generated the largest F1-score for a given dataset and used

this score in subsequent analyses. (F) Including all feature information substantially and consistently improved tracking performance

compared to when only object positions were used (see also S2 Fig). The arrow to the right of the plot (labelled ‘Performance increase’)

indicates the median F1-score for the two cases, corresponding to a ~10-fold reduction of tracking errors when all features were used.

Furthermore, we found that our trackability metric was an excellent predictor of tracking accuracy for a given set of features, suggesting

that it can be used to estimate the accuracy of the algorithm even when a ground truth is not available. In the different simulations we

varied rod density, propulsive force, and framerate, as well the amount of noise in the measurement of position, length and fluorescence

(Table 1). The black circles in F correspond to the dataset presented in E.

https://doi.org/10.1371/journal.pcbi.1011524.g003

Table 1. Parameters of the SPR model used to generate synthetic datasets. Here we show both range of values we

tested and baseline value that was used when we varied another parameter. Note that our simulations are non-dimen-

sionalised, using the width of a single rod as the characteristic lengthscale and the time taken for an isolated rod with

self-propulsion force ν = 1 to move a single rod width as the characteristic timescale.

Parameter

symbol

Parameter name Value(s)

A Area of simulation domain 10,000

f0 Stokesian friction coefficient 1

N Number of rods 700 (baseline) [300, 500, 700, 900, 1100]

(variable)

ν Self-propulsion force 1 (baseline) [0.7, 0.85, 1, 1.15, 1.3] (variable)

ΔT Time between sampled timepoints 10 (baseline) [5, 7.5, 10, 12.5, 15] (variable)

σr Standard deviation of positional measurement

noise

0.02 (baseline) [0.02, 0.1, 0.2, 0.4, 0.6]

(variable)

σϕ Standard deviation of orientational measurement

noise

0.02 radians

σa Standard deviation of length measurement noise 0.1 (baseline) [0.05, 0.1, 0.2, 0.4, 0.6]

(variable)

σI Standard deviation of fluorescence measurement

noise

1 A.U. (baseline) [0.5, 1, 2, 4, 6] A.U.

(variable)

https://doi.org/10.1371/journal.pcbi.1011524.t001
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[25,28]. However, identifying cell division events and the resulting daughter cells is a particu-

larly difficult challenge. Near-perfect tracking of individuals is essential for accurate lineage

tracking because single errors can propagate and cause lineages to be misassigned at later time-

points. We tested FAST’s lineage tracking capabilities using eight separate time lapse movies of

E. coli cells as they divided to form microcolonies [11]. These experiments were imaged using

a combination of phase-contrast and fluorescence microscopy, and used a strain with a GFP

transcriptional reporter to quantify the level of colicin Ib (cib) expression. The expression of

this gene is highly variable between cells but remains stable over a single generation. This com-

bination of population-level heterogeneity and individual-level stability means that the level of

GFP expression in each cell could contribute a large amount of information to FAST’s tracking

algorithm and thus substantially improve its performance.

We began by applying automated tracking and division detection to a single dataset. We

visualised the lineage structure of the microcolony using the Overlays module to rapidly verify

the accuracy of the lineage assignment (Fig 4A and 4B, S1 Movie). This revealed that the

descendants of each of the individual cells present at the beginning of the experiment formed

highly elongated structures within the colony, similar to the patterns previously observed in

experiments where colonies were initiated from multiple founder cells labelled with different

fluorescent proteins [8]. Next, we used our batch processing tool—doubleFAST—to automate

the analysis of the remainder of the eight datasets, using the parameters obtained when analys-

ing the first microcolony. A complete breakdown of processing times by module and dataset is

shown in Table 2—in total, processing of all eight datasets took 5.5 minutes, or around 40 sec-

onds per microcolony on a standard laptop computer (Methods).

Although these automated analyses produced highly accurate results, a few tracking and

division assignment errors were observed (Fig 4B). To objectively assess the accuracy of

FAST’s algorithms, we benchmarked our results by constructing manually-validated ground-

truth versions of the Segmentation, Tracking and Division-Detection module outputs. In the

case of the Tracking module, this task was substantially facilitated by our Track Correction

GUI. Our analyses then proceeded via two separate streams: in the first, ‘corrected’ stream, we

used the manually corrected output of the Segmentation module as an input to the Tracking

module, and the manually corrected output of the Tracking module as an input to the Division

Detection module, allowing us to assess the quality of each module independently. In the sec-

ond, ‘automated’ stream, we used the uncorrected outputs of each module as the input to the

next. This allows us to assess the performance of the tracking and division detection algorithms

in conditions typical of large-scale analyses, where errors from earlier analyses are propagated

uncorrected into later steps (Fig 4C).

We found that the results of our Segmentation module were highly accurate, with a median

mis-segmentation rate of 0.52%. The Tracking module was similarly accurate, with a median

error rate of 1.02% when using the uncorrected segmentations as inputs. This is very similar to

the error rate reported for DeLTA 2.0 [36], which was also benchmarked against microcolony

datasets from van Vliet et al. [11]. We note, however, that the average error rate reported for

DeLTA 2.0 is an aggregate measure that also includes datasets from additional E. coli geno-

types in van Vliet et al. [11] not considered here. Manually correcting FAST’s rare mis-seg-

mentations had a relatively small impact on the Tracking module’s performance, decreasing

the median error rate to 0.71%, suggesting that the tracking algorithm’s automated system for

bridging mis-segmentations performs as intended. In contrast, the Division Detection mod-

ule’s performance was considerably enhanced when the input trajectories were manually cor-

rected, with the median error rate decreasing from 4.77% to 0.63%. We therefore recommend

using our track correction GUI if highly accurate lineage assignment is required.
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We also analysed the utility of trackability as a predictor of tracking algorithm performance,

equivalent to our automated benchmarking with the SPR model (Fig 4D). As before, we found

that trackability averaged over all timepoints with a relatively large number of cells (>32) was

robust predictor of the tracking performance on the different microcolonies. This was even

true for individual timepoints, with trackability being a much better predictor of tracking fidel-

ity than more rudimentary metrics such as the current number of cells within the microcolony

(S3 Fig). We also found that trackability was a strong predictor of how accurately divisions

were detected (Fig 4D). Lastly, we measured the performance of the tracking and division

Fig 4. Benchmarking FAST’s performance using an experimental dataset containing eight E. coli microcolonies. (A) Tracks showing the movement of

individual cells within a typical microcolony as it expands, where colours denote the instantaneous cell length. (B) Automated lineage tracking of microcolony

at three different timepoints. Cells that share the same mother in generation 1 (‘Gen 1’) are labelled with the same colour, illustrating how the spatial

distribution of different lineages develops over time. Occasional black cells in the final timepoint (‘Gen 6–7’) indicate cells that were not assigned to the correct

lineage. (C) Images from eight different microcolonies were processed with FAST to automatically obtain trajectories and division events. These were then

compared to a manually curated ground truth to calculate F1-scores, quantifying the performance of the Segmentation module (triangles), Tracking module

(filled circles) and Division Detection module (empty circles). These analyses proceeded in two parallel streams: In the ‘corrected’ stream, the inputs of the

Tracking and Division Detection modules had been manually corrected, whereas in the ‘automated’ stream these inputs were obtained directly from the

previous module and remained uncorrected. (D) When averaged over all timepoints that contained more than 32 cells, we found that the trackability metric

was a reliable predictor of the accuracy of both the Tracking and Division Detection modules under fully automated conditions. In addition, this analysis

showed that including cell length, width, fluorescent intensity and position as features in the Tracking module (‘All features’, purple) reduced the median

number of errors in both the Tracking and Division Detection modules by approximately 5-fold compared to results obtained using cell position alone

(‘Centroids only’, brown). (E-H) We next investigated which factors influence trackability by comparing metrics related to fluctuations in feature values–

average cell speed (E), relative elongation rate (the fractional change in cell length per min) (F), coefficient of variation (COV) of GFP intensity (G) and COV of

cell width (H). The statistical significance of correlations is denoted using the following symbols: * denotes p< 0.05, ** denotes p< 0.005, n.s. = not significant.

These analyses were performed using the log-transformed F1-scores in D and are based on a linear regression t-test. The orange points in C-H indicate the

exemplar microcolony shown in A and B. Visualisations shown in A and B were produced using FAST’s Overlays module.

https://doi.org/10.1371/journal.pcbi.1011524.g004
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detection algorithms when a large suite of features was used (cell length, width, fluorescence,

and position; denoted ‘All features’) compared to when only cell positions were used (denoted

‘Centroids only’). Similar to what was previously observed in the synthetic datasets, adding

extra features substantially increased the performance of our algorithms, reducing the number

of tracking and division assignment errors by approximately 5-fold.

Given that the eight microcolonies that we analysed used the same strain of bacteria and

were grown in the same experimental conditions, we were surprised by the variations in track-

ing performance that we observed across the eight microcolonies. One potential cause of this

variation was that the user-defined tracking parameters which were optimised for one dataset

were not optimal for the other microcolonies. However, when we systematically repeated the

benchmarks with different user-defined tracking parameters, we found that the set of tracking

parameters that produced the most accurate results was highly conserved across the eight

microcolonies (S4 Fig), suggesting this was not the primary cause. Next, we asked whether bio-

logical differences between the samples could be responsible for the observed variation in per-

formance. To test this, we measured each microcolony’s average cell speed, relative elongation

rate (the average fractional increase in cell length per minute), coefficient of variation (COV)

of GFP fluorescence and the COV of cell width using our manually corrected tracks, and

investigated how these metrics related to the microcolony’s trackability (Fig 4E–4H). We

found that the average rate at which cells move and grow within a microcolony were signifi-

cantly correlated with the microcolony’s trackability. In contrast, the amount of variability

observed in the cell fluorescence and cell width did not have an appreciable impact on a micro-

colony’s trackability. Taken together, these results indicate that the variation in the trackability

metric we observed were driven by real biological variation across the different microcolonies.

In this case differences in the average growth rate of cells in each microcolony likely drive

changes in the speed at which these non-motile colonies expand, and consequently impacts

the fidelity of tracking and division detection.

In summary, these analyses show that segmentation errors do not substantially affect the

tracking performance of FAST, but errors in tracking can detrimentally impact the detection

of cell division events. Moreover, these analyses of experimental data validate our previous

findings from the synthetic datasets by demonstrating firstly that tracking performance can be

substantially improved by including cell features other than cell position and secondly that

trackability is a reliable predictor of tracking fidelity. Finally, this case study demonstrates that

the two user-defined tracking parameters F and P do not need to be excessively fine-tuned to

obtain reliable tracking results (S4 Fig, note the logarithmically-spaced axes).

Table 2. Processing times and dimensions of lineage datasets. ‘Dimensions’ indicates the size of the raw imaging dataset as x-size, y-size and duration. x- and y-sizes are

recorded in pixels, while duration is recorded as the number of frames. ‘Objects’ indicates the total number of segmented objects in the manually corrected segmentations,

while ‘Cells’ indicates the total number of separate cell trajectories in the manually corrected track dataset. The ‘Processing time’ section reports the amount of time taken

to process each dataset by each module of FAST (in seconds) on a standard laptop computer (see Methods for details).

Processing time (s)

Dataset ID Dimensions Objects Cells Segmentation Features Tracking Divisions

140408_01_cib 645x634x88 2698 363 26.0 10.2 3.5 16.8

140408_02_cib 600x445x104 1117 164 19.6 5.2 1.0 3.1

140408_09_cib 627x629x76 2398 288 20.8 6.2 2.0 9.9

140408_10_cib 517x831x92 2118 287 27.1 6.5 1.7 5.5

140408_11_cib 517x724x75 1701 198 19.3 4.9 1.9 6.8

140409_03_cib 738x540x82 2968 324 26.9 7.1 2.5 13.0

140415_08_cib 575x670x67 1760 224 24.5 4.9 1.7 9.9

140415_13_cib 489x655x79 2590 301 26.5 5.7 1.9 10.0

https://doi.org/10.1371/journal.pcbi.1011524.t002
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Quantifying rapid bursts of cell movement in densely packed P. aeruginosa monolay-

ers. Many different species of bacteria generate collective motility in densely-packed commu-

nities using either flagella, Type IV pili, or via gliding [2,15,35,37]. Motility allows populations

to rapidly expand into new territory, giving them a competitive advantage over non-motile

genotypes [1,38]. Here we demonstrate how FAST can be used to quantify the behaviour of P.

aeruginosa cells in interstitial colonies that form between agar and glass [37]. We focus on cells

within the monolayer that forms directly behind the colony’s leading edge, the dynamics of

which play a crucial role in the competition between genotypes in both interstitial and more

classical ‘surficial’ colonies [1].

Tracking cells undergoing collective movement requires a much larger acquisition frame

rate compared to non-motile cells. While expensive timing boards can be used to ‘trigger’ cam-

eras with a high level of precision to keep the time between frames nearly constant, many

high-end research microscopes lack this capability. Instead, ‘camera streaming’ is more widely

available, which directly streams the camera’s output to a computer which saves frames as fast

as possible. This maximises the frame rate, but images acquired via camera streaming can have

slight variations in the time that elapses between subsequent frames.

To illustrate how FAST can be used to handle a sequence of images collected via camera

streaming, we collected a large dataset with 3,505 frames recorded at an average rate of 127

frames per second. The size is of this dataset is approximately 8 Gb and each frame contains

approximately 1,700 tightly packed P. aeruginosa cells. Despite the large size of this dataset,

processing with FAST could be completed on a standard laptop computer (Methods), requir-

ing only 200 mins to segment and 355 mins to extract the features of each of the ~6 million

individual objects.

Tracking consists of two separate stages: the model training stage, and the link assignment

stage. After completion of the model training stage, FAST automatically generates and plots

the trackability of the dataset at each timepoint (Fig 5A). For our dataset, this plot revealed

that the trackability dropped precipitously at some timepoints. We hypothesised that these

decreases resulted from a reduction in the imaging framerate. To test this, we plotted the track-

ability score against ∆t, the elapsed time between frames as calculated from timestamps

(Fig 5A, inset). This revealed a strong negative correlation (Pearson’s correlation coefficient =

-0.705), suggesting that the longer the time between frames, the lower the trackability and the

less accurate the tracking results. To avoid these timepoints—and the spurious tracking results

they might generate—we used the tracking module’s built-in time window selection tool to

specify a subset of frames to track (Fig 5A, green region, 750 frames). Training the tracking

model for this reduced dataset took 18 minutes, while tracking and track processing took an

additional 88 minutes.

In this example, a relatively large timestep ∆t allows cells to move further between frames,

which reduces predictability and therefore reduces the trackability score. More generally, how-

ever, the trackability depends on a combination of both experimental and imaging conditions,

providing a robust metric to interpret datasets. For example, the trackability score can be used

to quickly identify a wide range of problems which might arise during an experiment, includ-

ing fluctuations in focus, illumination intensity, or inadvertent movement of the sample. Once

problematic timepoints have been identified, the user can decide either to avoid them by using

a subset of the images (as in this example) or to reject the entire dataset.

Tracking the smaller subset of images that we specified resulted in over 1,600 separate tra-

jectories, each at least 200 timepoints long. To visualise this large dataset, we used the Overlays

module to colour individual cells in the phase-contrast image based on their instantaneous

speed (Fig 5B, S2 Movie). This revealed that while most cells move at relatively slow speeds, a

small number of cells undergo rapid, sporadic bursts of movement approximately 25 times
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faster than the average. These rapid movements are also clearly visible in measurements of the

speed of individual cells over time (Fig 5C). Our results are similar to the ‘slingshots’ previ-

ously observed in solitary P. aeruginosa cells moving at the glass/liquid interface, apparently

driven by pilus detachment events [39]. However, the peak speeds that we record (up to 60 μm

s-1) in collectives of P. aeruginosa are approximately 20 times larger than those previously

observed. While we do not know the specific reason for this difference, interactions with

neighbouring cells facilitated by the high cell density, the glass/agar interstitial colony environ-

ment and our higher framerate (~13 times that of [39]) may each play a role.

Fig 5. Tracking single cells in an interstitial P. aeruginosa colony spreading via pili-based motility. (A) We used FAST to track cells within a monolayer of

P. aeruginosa undergoing collective motility using position, length and width as features. Images were collected using high speed ‘camera streaming’ with a

mean frame rate of 127 fps, but variations in the elapsed time between subsequent frames, ∆t, resulted in transient reductions in trackability. (A, inset) Analysis

of the timestamps associated with each frame revealed that the trackability score was negatively correlated with ∆t (r indicates Pearson’s correlation coefficient;

the warmer colours denote a higher density of data points). We therefore restricted our subsequent analyses to a subset of the data in which the trackability

score was relatively constant (green region) using FAST’s built-in tools. (B) We used the Overlays module to colour code cells based on their instantaneous

speed. Although cells typically moved relatively slowly, very occasionally cells were observed to undergo a very rapid burst of movement (see cream coloured

cell). (C) These rapid jumps can also be observed in traces of the speed of individual cells. Here we plot the instantaneous speed of three different cells over

time, each in a different colour. The montages above illustrate three of these transient events, using the same colour coding shown in B. (D) To investigate these

movements at the population level, we calculated instantaneous cell velocities in both the x and y direction for all cells and plotted their combined distribution.

In other active systems, this distribution is approximately Gaussian. However, in our system the highly transient bursts of velocity result in heavy tails, causing

them deviate from a Gaussian distribution with the same variance (dashed black line).

https://doi.org/10.1371/journal.pcbi.1011524.g005
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To illustrate how this large tracking dataset can be mined to elucidate the statistics of rare

events, we constructed the instantaneous marginal velocity distribution from our tracks (i.e. the

x- and y-components of the instantaneous velocity vectors) (Fig 5D). While previous studies

have found that sperm and swimming bacterial cells undergoing collective movement generate

marginal velocity distributions that are approximately Gaussian [35,40], we observed that bacte-

ria collectively moving via pili-based motility exhibit much heavier tails corresponding to their

occasional rapid motions. Despite the rarity of these events—less than 0.05% of our measure-

ments had a magnitude larger than 20 μm s-1—the exceptional number of cell trajectories we

obtained nevertheless allowed us to finely resolve their statistical distribution. These analyses

demonstrate how FAST can be used to rapidly characterise the motility of a large number of

cells in densely-packed conditions, with relatively little user input and computational effort.

Automated analysis of T6SS battles. To illustrate FAST’s capabilities beyond standard

cell tracking, we analysed the activity of the Type 6 Secretion System (T6SS) using FAST. The

T6SS is a highly dynamic organelle composed of a molecular ‘spear’ tipped with a toxin known

as an effector [41]. Bacteria that possess the T6SS can inject this effector into neighbouring

cells, which kills them [42]. Firing events can be monitored by visualising the localisation of

the protein that forms the contractile sheath of the T6SS needle, TssB in P. aeruginosa and

VipA in Vibrio cholerae [12,43]. Here, we highlight how FAST can be used to quantify how the

T6SS is regulated in co-cultures of V. cholerae and P. aeruginosa.

Because of its short range, the T6SS is effective only at high cell density, which historically

has made it difficult to study using automated analyses. We used FAST to analyse imaging

datasets that show V. cholerae and P. aeruginosa cells expressing VipA-mCherry and TssB-

mNeongreen, respectively, interacting through their respective T6SSs when mixed together in

a densely-packed monolayer [12] (Fig 6A, left). We distinguished the two species from one

another (Fig 6A, right) using FAST’s post-processing toolbox, which compares each cell’s

intensity in the mCherry and mNeonGreen channels to automatically assign them to two dis-

tinct populations (Fig 6B). This utility allows one to rapidly compare the behaviour of different

genotypes within the same sample.

The architecture of FAST allows users to easily define and quantify novel features that are

not already included in FAST. To do this, users can write a short feature measurement script

that can make use of the segmentation of each object in each frame, as well as the correspond-

ing regions in each of the imaging channels—in this case, the mNeongreen, mCherry and

phase-contrast signals. The Feature Extraction module then automatically stores these custom

features in the same way as the built-in features, allowing them to be integrated into down-

stream analyses. To illustrate this capability, we extracted cell curvature as a custom feature to

see if we could detect the differences in morphology of V. cholerae cells (which are comma

shaped) from that of P. aeruginosa (which are rod shaped). Using a skeletonization-based

approach, we extracted the morphological backbone of each cell from its segmentation and

measured its curvature by finding the best-fit circle to this set of points. Consistent with expec-

tations, our automated analysis found that the cells identified as V. cholerae were substantially

more curved than those identified as P. aeruginosa (Fig 6C).

Our software is also capable of generating sophisticated visualisations and analyses of the

behaviour of single cells. For example, FAST allows the dynamics of T6SS firing in individual

cells to be easily visualised using the kymograph option of the Plotting module (Fig 6D), as

well as the ‘cartouche’ option, which extracts and aligns cropped images of the specified cells

(Fig 6F). We can also quantify the dynamics of the T6SS using the feature data associated with

a given cell: the standard deviation of the mNeongreen channel substantially increases during

firing (Fig 6E), as the TssB becomes non-uniformly distributed through the cell as it assembles

into the sheath.
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It is generally accepted that P. aeruginosa only fires its T6SS when triggered by the firing of

the T6SS of a neighbouring cell [9,12]. Although qualitative evidence for this is strong, to our

knowledge this effect has never been directly quantified, likely because of the difficulties

involved with tracking densely packed cells and because the T6SS firing events are themselves

relatively rare. We therefore decided to use FAST to simultaneously track a large number of

densely packed cells and automatically detect when each fires its T6SS. We used doubleFAST

to automate the analysis of multiple datasets from experiments in which WT P. aeruginosa
cells were either co-cultured with WT V. cholerae or co-cultured with a mutant V. cholerae

Fig 6. Identifying different bacterial species, quantifying cell morphologies, and investigating T6SS dynamics in a densely packed collective. (A) A

monolayer composed of a mixture of P. aeruginosa cells expressing TssB-mNeongreen and V. cholerae cells expressing VipA-mCherry (left). Measurements of

the average intensity of each cell in the two different fluorescence channels allowed us to automatically distinguish the two species (B), an approach known as

image cytometry. By colour coding each cell (P. aeruginosa, cyan, V. cholerae, red), we were able to visually confirm the accuracy of the assignment process (A,

right). (C) We then quantified a novel feature, cell curvature, using FAST’s custom feature extraction framework to calculate the curvature of the segmentation

backbones (inset). Splitting these measurements into the two previously assigned populations showed the comma shaped V. cholerae cells were substantially

more curved than the rod-shaped P. aeruginosa cells. (D-F) We then used FAST’s plotting options to illustrate the dynamics of the T6SS. A P. aeruginosa cell

fires its T6SS machinery (observed as the bright puncta of TssB), which can be visualised using the kymograph (D) and ‘cartouche’ (F) plotting options, and

which also leads to an increase in the standard deviation of the mNeongreen channel (E). (G) We used this latter measurement to detect when the T6SS was

active in a cell, allowing us to measure the proportion of time that each cell in the population spends in the firing state. Our analyses confirmed that when co-

cultured with a strain of V. cholerae with an inactive T6SS (Δhcp1 Δhcp2), the T6SS activity of WT P. aeruginosa cells is dramatically reduced compared to

when they are co-cultured with WT V. cholerae. Here the circles show averages from separate movies and horizontal lines show the mean for all samples of a

given combination of genotypes.

https://doi.org/10.1371/journal.pcbi.1011524.g006
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strain that is incapable of firing their T6SS (Δhcp1 Δhcp2). Using the standard deviation of the

mNeongreen channel to distinguish when P. aeruginosa is actively firing its T6SS, we calcu-

lated the proportion of time that P. aeruginosa cells spend firing their T6SS (Fig 6G, S3

Movie). As expected, when co-cultured with the inactivated Δhcp1 Δhcp2 V. cholerae strain, P.

aeruginosa dramatically reduced the proportion of time it spent firing its T6SS compared to

when co-cultured with WT V. cholerae. These analyses generated 1,246 separate trajectories, of

which around half (601) spanned the full 151 timepoints of the experiments. In conclusion,

this case study demonstrates how FAST can automatically distinguish different species, how

users can specify novel features like cell curvature, and how complex bacterial behaviours can

be quantified using feature data.

Discussion

Advances in experimental techniques and automated microscopy have transformed live cell

imaging from a technique that relies largely on qualitative observation into a highly quantita-

tive discipline that leverages huge amounts of data. Integral to this renaissance are computa-

tional tools that can automatically parse and annotate the large imaging datasets resulting

from these experiments. Many tools have been developed for this purpose [17,24–28,44–47],

each optimised for a specific research question. As we have emphasized throughout this manu-

script, our own contribution is particularly well-suited for the analysis of experiments where

cells are tightly packed together.

We designed FAST to allow users to rapidly obtain high-quality results by minimising both

the number of user-defined parameters in the Tracking module and the computational time

required to process an imaging dataset containing many cells. Our tracking algorithm auto-

matically determines how to combine data from different cell features, which prevents users

from having to iteratively improve tracking results by sequentially adjusting a large number of

parameters—typically a very slow and laborious process. In the case of the microcolony analy-

ses of Fig 4, selecting appropriate values of the user-defined tracking parameters F and P took

only a few minutes using FAST’s built-in tools. Subsequent benchmarking showed that the

specific set of F and P parameters chosen for the first microcolony were nearly optimal for all

eight datasets (S4 Fig). This robustness allows users to queue the autonomous analysis of many

datasets using doubleFAST. Our approach also provides the user with a single, easy to interpret

metric that allows them to rapidly identify and avoid sections of datasets that are predicted to

yield low-fidelity trajectories. While the basic FAST package already outputs most of the cell

features that are widely used by researchers, simple modifications to the system allow users to

integrate new features into the existing analytical framework.

We also note some limitations to our approach. Firstly, large-scale shifts in field of view, for

example caused by thermal drift or the imprecise movement of a motorised stage, can

adversely impact the tracking accuracy of FAST. While the timepoints at which these shifts

occur can be pinpointed by the associated sharp reductions in trackability (and potentially

excluded from subsequent analyses, similar to the process shown in Fig 5A), it is usually better

to stabilise troublesome datasets with tools such as TurboReg [48] before processing them with

FAST. We also note that the reliance of our approach on summary statistics such as St(Δx)

(the covariance matrix of feature displacements) means that it can suffer from stability issues

when the number of cells in the field of view is very low (≲10), as there is insufficient training

data to accurately estimate these statistics. However, should this pose an issue—for example at

the beginning of microcolony datasets when there are only small numbers of cells—the rela-

tively small amounts of data involved generally make it feasible to correct these errors using

the manual track correction GUI.
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Tracking systems typically break down in one of two ways—either individual objects can-

not be distinguished, or the tracking algorithm cannot accurately link individuals between

frames. Machine learning is increasingly used to solve the first of these two challenges, and a

number of software packages which use deep learning methods to segment microbes at high

density are now widely available [36,46,47,49,50]. However, the application of such techniques

to the tracking problem has gained traction only in the last few years [36,51–53]. The approach

described here is based on a statistical framework that optimises track quality while simulta-

neously providing a metric that predicts trajectory reliability. Our software has already proven

its ability to elucidate the rich and complex behaviours that individual bacteria exhibit in

densely-packed conditions [1,10,22,23]. Future work stemming from these combined experi-

mental and analytical approaches could ultimately shed new light on how dense bacterial com-

munities function and help us to develop novel strategies to manipulate them.

Online methods

Computational resources

All analyses presented in this manuscript were performed with a Microsoft Surface Book 2,

with an 8-core Intel i7-8650U CPU and 8 Gb of RAM. FAST was run directly in Matlab, ver-

sion 2018b.

SPR model

The 2D SPR model used in this manuscript has been described in detail elsewhere [1,35]. In

brief, we model cells as stiff rods composed of evenly-spaced Yukawa segments, mutually

repulsive point potentials. We initialise the system by filling a square domain with Nr rods,

evenly spaced on a lattice. Each rod i is associated with an aspect ratio ai and a fluorescence

intensity Ii, randomly drawn from distributions fitted to P. aeruginosa data from an experi-

ment visualising the T6SS [9] as shown in S1 Fig. The packing fraction of the system, ρ, is cal-

culated as

r ¼
1

A

XNr

i¼1

ai � 1ð Þ þ
p

4

h i
;

where A is the area of the simulated domain, which has doubly periodic boundary conditions.

Taking the instantaneous position of a rod i as ri, its orientation as ϕi, the unit vector denot-

ing this orientation as û i and the sum of the potentials between i and all other rods as Ui, we

define the equations of motion for each rod as:

f T �
@ri

@t
¼ �

@Ui

@ri
þ nûi; ð5AÞ

f�
@�

i

@t
¼ �

@Ui

@�
i ; ð5BÞ

where fT is the translational friction tensor, fθ is the rotational friction constant and ν is the size

of a self-propulsion force exerted by each rod along its axis. We use the formulation presented

in [35] to calculate fT and fϕ, which are in turn functions of the rod aspect ratio and the Stoke-

sian friction coefficient, f0. We simulate the dynamics of our system by numerically integrating

Eqs 5A and 5B using the midpoint method.

Following an initial transient, the system reaches a statistical steady-state. At this time, we

begin to measure the positions, orientations, lengths and intensities of each rod at a sampling
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“framerate” ΔT. We add simulated measurement noise to each of these measurements, which

is drawn from a Gaussian distribution with a mean of zero. The standard deviation of the mea-

surement noise for each feature is controlled by the parameters σr (positional noise), σϕ (orien-

tational noise), σa (length noise) and σI (fluorescence noise). To constrain the baseline

estimates of these noise parameters, we measured how each of the corresponding features fluc-

tuated about the mean in the T6SS firing dataset [9]. The cells in this dataset are non-motile

and the framerate is high enough that growth is negligible, meaning any apparent changes in

position, orientation, length or fluorescence are wholly attributable to measurement noise.

We varied the properties of our simulations by adjusting the values of the parameters N, v,

ΔT, σr, σa and σI in different simulation runs. The values of these parameters, as well as the

fixed system parameters, are provided in Table 1.

Sample preparation

The monolayer of P. aeruginosa presented in Fig 5 was prepared using the wild-type PAO1

strain [54]. Cells were streaked out from freezer stocks onto LB agar plates (Lennox, 20 g/l,

Fisher Scientific, solidified with 1.5% (w/v) agar, Difco brand, BD) and incubated overnight at

37˚C. Single colonies were picked from the resulting plates and incubated overnight in liquid

culture under continuous shaking, resulting in stationary phase cultures. These were then

diluted 30-fold and returned to the shaking incubator for a further two hours, yielding cultures

in exponential phase. The final culture used for inoculation was prepared by adjusting the opti-

cal density at 600 nm (OD600) of the exponential phase cultures to 0.05 using fresh LB, corre-

sponding to an approximate concentration of 12,500 cells μl-1
.

We prepared monolayers from these cultures using a similar protocol to that described in

[37]. 1 μl of inoculation culture was spotted onto the centre of a small (2 cm x 2 cm) LB agar

pad. To provide optimal conditions for observing twitching motility, the concentration of agar

in these pads was 0.8%. This pad was then inverted and placed into the base of a coverslip-bot-

tomed Petri dish (175 μm coverslip thickness, MatTek), which was then closed and incubated

for 16 hr at room temperature. The ability to close the lid of the Petri dish allowed us to avoid

desiccation of the sample during incubation. By the end of the incubation period, a large inter-

stitial colony with a dense monolayer at its perimeter had formed [1].

Microscopy

The high framerate movie used for the analysis of rapid motion (Fig 5) was acquired using a

Zeiss Axio Observer.Z1 microscope outfitted with an Axiocam 702 camera set to ‘camera

streaming’ mode and a Plan Apochromat 63x oil-immersion objective.

Other datasets

The datasets of dividing E. coli cells (Fig 4) were downloaded from the raw data repository

associated with reference [11], https://zenodo.org/record/268921. They were then stabilised

using a customised version of the TurboReg plugin [48]. The T6SS firing dataset (Fig 6) was

downloaded from the Supplementary Information section of reference [12] under a Creative

Commons Attribution license. FIJI’s [55] built-in AVI reader was used to extract individual

frames of this movie.

Supporting information

S1 Fig. Distributions used to specify initial conditions of the SPR model. The distributions

of trajectory-averaged aspect ratios (A) and GFP intensities (B) of a dataset of non-motile P.
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aeruginosa cells [9]. A gamma distribution (shape parameter = 15.3, scale parameter = 0.248)

and a normal distribution (mean = 63.1, standard deviation = 8.83), respectively, were fitted to

these two datasets (black dotted lines). To initialise the SPR model, rod aspect ratio, ai, and

simulated fluorescence intensity, Ii, were randomly drawn from these two fitted distributions,

allowing us to ensure that these two features were modelled realistically in our simulations.

(TIFF)

S2 Fig. Including additional feature information improves trackability and increases track-

ing fidelity. We measured the trackability (A, B) and maximum F1-scores (C, D) of synthetic

high-density motility data generated using a range of different parameter combinations. Both

‘simulation parameters’ (parameters that change the properties of the SPR model we used to

generate the synthetic dataset, A, C) and ‘measurement parameters’ (parameters that change

the amount of measurement noise for each of the different features, B, D) were varied. See

Table 1 for further details. Here we compare trackability and tracking fidelity when the track-

ing algorithm can only use positional information (‘Centroids’, brown) to when all feature

information is available (‘All features’, purple). Arrows show the consistent increase in these

two metrics when all features from the synthetic dataset are used, illustrating the robustness of

our approach.

(TIFF)

S3 Fig. The trackability metric is a more reliable predictor of tracking performance com-

pared to the number of cells within a microcolony. We used manually corrected ground-

truth datasets to calculate the performance of FAST’s tracking algorithm at each time point of

the microcolony datasets shown in Fig 4, using either the full suite of features (purple) or only

the cell positions (brown). For all time points that contained 32 or more cells, we then com-

pared the resulting F1-scores to (A) the instantaneous trackability and (B) the number of cells

in the microcolony. For all four regressions, the correlation between the predictor and the

F1-score was significant (p< 0.05, linear regression t-test), however the strength of the correla-

tion was much higher for trackability than cell number, as indicated by the corresponding

Pearson correlation coefficients (r).
(TIFF)

S4 Fig. Cell tracking is robust to changes in the two user-defined parameters and produces

consistent results across experimental datasets. We tracked cells in each of the eight E. coli
microcolonies forty-nine different times, each time with a different set of the two user-defined

parameters—F, the proportion of links included in the training dataset and P, the tracking

threshold. These two parameters allow the user to balance the trade-off between trajectory

quality and trajectory quantity during the initial training stage and the primary tracking stage,

respectively. We then compared the results of these automated analyses with a manually

curated ground-truth to calculate the F1–score, which measures overall tracking fidelity. These

analyses were repeating using both the full set of features (length, fluorescent intensity, width

and position, above) and only the cell positions (below). In both cases, we found a wide basin

of [F, P] parameter values that produced a similar level of tracking performance. Moreover,

the combination of [F, P] values that produced the best results was similar between the differ-

ent microcolonies, suggesting that a set of [F, P] optimised for one set of experimental images

can be applied to subsequent datasets without adversely affecting tracking performance (note

the logarithmic axes). The values of F and P used in the analyses of Fig 4 are shown with black

squares.

(TIFF)
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S1 Movie. Tracking cells, divisions, and lineages in a growing E. coli microcolony. Growth

of E. coli cells in a microcolony was imaged using phase contrast and fluorescence microscopy

[11] (left). The left-hand panel shows a combination of the original phase contrast and fluores-

cence images, the middle panel shows the individual cell trajectories (where colours denote the

instantaneous cell length), and the right-hand panel shows the “lineage tree”. In the lineage

tree, the thin lines denote the trajectories of individual cells and thick lines represent division

events—both are colour-coded to denote the number of generations elapsed from the original

founder cell. This movie shows the same ‘automated’ analysis presented in Fig 4 A and B, in

which nothing has been manually corrected. All graphics were generated by FAST’s built in

Overlays module. The image datasets were obtained from a previous study [11]. Shown here is

Dataset ID 140408_01_cib (see Table 2). Elapsed time: 7 hours 5 minutes.

(AVI)

S2 Movie. Quantifying rapid, slingshot-like movements of single P. aeruginosa cells in a

densely-packed monolayer. Cell segmentations are coloured-coded (using the Overlays mod-

ule) by their instantaneous speed, ranging from stationary (black) to the maximum detected

cell speed (light orange). Circles show time points interpolated by the tracking algorithm when

cells were temporarily mis-segmented. Here we only show the trajectories longer than 200

frames that were included in our final analyses. While FAST outputs many shorter trajectories,

these were generally terminated due to multiple consecutive cell mis-segmentations. Thus, to

be conservative we only used very long trajectories to quantify the rare slingshotting events

(Fig 5D). This movie shows a 230 frame subset of the entire 750 frame long dataset. Elapsed

time: 1.809 seconds.

(AVI)

S3 Movie. Automated detection of P. aeruginosa T6SS firing events. We automatically

detect firing events of the Type 6 Secretion System (T6SS) using a function from the FAST

toolbox that autonomously identifies ephemeral increases in the standard deviation of the GFP

pixel intensity within a cell’s segmentation (Fig 6E), which result from the assembly and con-

traction of the fluorescently labelled sheath that surrounds the T6SS needle. The firing events

are marked by red circles (using the Overlays module), which are centred on the cell centroid

and scaled by the cell length, over greyscale images showing GFP intensity. These imaging

datasets were obtained from a previous study [12]. Elapsed time: 3 minutes.

(AVI)

S1 Text. Design goals and module specifications. Includes Fig A-E.

(PDF)
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