423 research outputs found

    Unified Field Theory From Enlarged Transformation Group. The Covariant Derivative for Conservative Coordinate Transformations and Local Frame Transformations

    Full text link
    Pandres has developed a theory in which the geometrical structure of a real four-dimensional space-time is expressed by a real orthonormal tetrad, and the group of diffeomorphisms is replaced by a larger group called the conservation group. This paper extends the geometrical foundation for Pandres' theory by developing an appropriate covariant derivative which is covariant under all local Lorentz (frame) transformations, including complex Lorentz transformations, as well as conservative transformations. After defining this extended covariant derivative, an appropriate Lagrangian and its resulting field equations are derived. As in Pandres' theory, these field equations result in a stress-energy tensor that has terms which may automatically represent the electroweak field. Finally, the theory is extended to include 2-spinors and 4-spinors.Comment: Aug 25 replacement has corrected margin width

    The OmniPod Insulin Management System: the latest innovation in insulin pump therapy

    Get PDF
    This review of insulin pump therapy focuses on the OmniPod¼ Insulin Management System (Insulet Corp., Bedford, MA, USA). The OmniPod System is the first commercially available “patch pump.” It is a fully integrated wearable pump, controlled wirelessly through a handheld device containing a built-in blood glucose meter. This is an evaluation of the OmniPod System, with the aim of providing an educational tool for physicians who are considering recommending this product to their patients. The review includes a discussion of the traditional insulin pump configuration and its limitations, a detailed overview of the OmniPod System, references to clinical study data, planned product enhancements, its use as an insulin delivery system in the Juvenile Diabetes Research Foundation’s Artificial Pancreas Project, and its use to deliver additional compounds

    Differential Mammary Gland Development in FVB and C57Bl/6 Mice: Implications for Breast Cancer Research

    Get PDF
    A growing body of research suggests a linkage between pubertal mammary gland development and environmental factors such as diet as modifiers of long term breast cancer risk. Much of this research is dependent upon mouse models, which may vary between studies. However, effects may be strain dependent and further modified by diet, which has not been previously examined. Therefore, the objective of the present study was to determine whether mammary gland development differs between FVB and C57Bl/6 strains on diets containing either n-6 or n-3 polyunsaturated fats. Developmental measures related to onset of puberty and mammary gland development differed between strains. Mice fed the n-3 polyunsaturated fatty acids (PUFA) diet were shown to have lower numbers of terminal end buds, a marker of mammary gland development. This study helps to further clarify differences in development and dietary response between FVB and C57Bl/6 mice in order to more appropriately relate mammary gland research to human populations

    Mass Transportation on Sub-Riemannian Manifolds

    Get PDF
    We study the optimal transport problem in sub-Riemannian manifolds where the cost function is given by the square of the sub-Riemannian distance. Under appropriate assumptions, we generalize Brenier-McCann's Theorem proving existence and uniqueness of the optimal transport map. We show the absolute continuity property of Wassertein geodesics, and we address the regularity issue of the optimal map. In particular, we are able to show its approximate differentiability a.e. in the Heisenberg group (and under some weak assumptions on the measures the differentiability a.e.), which allows to write a weak form of the Monge-Amp\`ere equation

    Self-consistent scattering description of transport in normal-superconductor structures

    Full text link
    We present a scattering description of transport in several normal-superconductor structures. We show that the related requirements of self-consistency and current conservation introduce qualitative changes in the transport behavior when the current in the superconductor is not negligible. The energy thresholds for quasiparticle propagation in the superconductor are sensitive to the existence of condensate flow (vs≠0v_s\neq 0). This dependence is responsible for a rich variety of transport regimes, including a voltage range in which only Andreev transmission is possible at the interfaces, and a state of gapless superconductivity which may survive up to high voltages if temperature is low. The two main effects of current conservation are a shift towards lower voltages of the first peak in the differential conductance and an enhancement of current caused by the greater availability of charge transmitting scattering channels.Comment: 31 pages, 10 PS figures, Latex file, psfig.sty file is added. To appear in Phys. Rev. B (Jan 97

    Large-scale magnetic fields from inflation in dilaton electromagnetism

    Full text link
    The generation of large-scale magnetic fields is studied in dilaton electromagnetism in inflationary cosmology, taking into account the dilaton's evolution throughout inflation and reheating until it is stabilized with possible entropy production. It is shown that large-scale magnetic fields with observationally interesting strength at the present time could be generated if the conformal invariance of the Maxwell theory is broken through the coupling between the dilaton and electromagnetic fields in such a way that the resultant quantum fluctuations in the magnetic field has a nearly scale-invariant spectrum. If this condition is met, the amplitude of the generated magnetic field could be sufficiently large even in the case huge amount of entropy is produced with the dilution factor ∌1024\sim 10^{24} as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys. Rev. D; some references are adde

    Effective killing of the human pathogen Candida albicans by a specific inhibitor of non-essential mitotic kinesin Kip1p

    Get PDF
    Kinesins from the bipolar (Kinesin-5) family are conserved in eukaryotic organisms and play critical roles during the earliest stages of mitosis to mediate spindle pole body separation and formation of a bipolar mitotic spindle. To date, genes encoding bipolar kinesins have been reported to be essential in all organisms studied. We report the characterization of CaKip1p, the sole member of this family in the human pathogenic yeast Candida albicans. C. albicans Kip1p appears to localize to the mitotic spindle and loss of CaKip1p function interferes with normal progression through mitosis. Inducible excision of CaKIP1 revealed phenotypes unique to C. albicans, including viable homozygous Cakip1 mutants and an aberrant spindle morphology in which multiple spindle poles accumulate in close proximity to each other. Expression of the C. albicans Kip1 motor domain in Escherichia coli produced a protein with microtubule-stimulated ATPase activity that was inhibited by an aminobenzothiazole (ABT) compound in an ATP-competitive fashion. This inhibition results in ‘rigor-like’, tight association with microtubules in vitro. Upon treatment of C. albicans cells with the ABT compound, cells were killed, and terminal phenotype analysis revealed an aberrant spindle morphology similar to that induced by loss of the CaKIP1 gene. The ABT compound discovered is the first example of a fungal spindle inhibitor targeted to a mitotic kinesin. Our results also show that the non-essential nature and implementation of the bipolar motor in C. albicans differs from that seen in other organisms, and suggest that inhibitors of a non-essential mitotic kinesin may offer promise as cidal agents for antifungal drug discovery

    Climate adaptation for rural water and sanitation systems in the Solomon Islands: A community scale systems model for decision support

    Get PDF
    Delivering water and sanitation services are challenging in data poor rural settings in developing countries. In this paper we develop a Bayesian Belief Network model that supports decision making to increase the availability of safe drinking water in five flood-prone rural communities in the Solomon Islands. We collected quantitative household survey data and qualitative cultural and environmental knowledge through community focus group discussions. We combined these data to develop our model, which simulates the state of eight water sources and ten sanitation types and how they are affected by season and extreme events. We identify how climate and current practices can threaten the availability of drinking water for remote communities. Modelling of climate and intervention scenarios indicate that water security could be best enhanced through increased rainwater harvesting (assuming proper installation and maintenance). These findings highlight how a systems model can identify links between and improve understanding of water and sanitation, community behaviour, and the impacts of extreme events. The resultant BBN provides a tool for decision support to enhance opportunities for climate resilient water and sanitation service provision
    • 

    corecore