1,070 research outputs found
Measuring crack initiation and the plastic deformation behaviour of titanium aluminides under compressive and tensile uniaxial loading
At temperatures of the order of 700 °C, suitable for the operation of low and intermediate pressure turbines and compressors in gas turbine engines, gamma titanium aluminides possess a higher specific strength than nickel superalloys. However, γ-TiAl suffers from a sufficiently reduced plasticity for a threshold approach to fatigue lifing to be necessary. Improving the fatigue behaviour of γ-TiAl requires an understanding of crack nucleation and how this is related to the detailed microstructure.
Towards this, the monotonic compressive and tensile deformation behaviour of this two-phase lamellar composite alloy, Ti-45Al-2Nb-2Mn(at.%)-0.8vol%TiB2, currently undergoing engine tests by Rolls Royce, has therefore been measured at both room temperature and at 700°C. Both colony and lamellar-scale deformation features of the material have been investigated. Microstructural conditions with varying lamellar thicknesses were characterised by scanning electron microscopy and transmission Kikuchi diffraction. The near-surface plastic strain field and the build-up of local strains have been measured, using digital image correlation, with a remodelled gold speckle pattern, and compared with misorientation mapping using electron backscatter diffraction, both before and after testing.
Temperature was found to have a significant impact on the active deformation mechanisms and their directions relative to the lamellae; this affects the ability of the material to provide compatible deformation. At high temperature, the shear generated upon twinning was found to be closely associated to debonding at colony boundaries. This is related to the possible accumulation of damage in cyclic loading
Parity nonconservation in heavy atoms: The radiative correction enhanced by the strong electric field of the nucleus
Parity nonconservation due to the nuclear weak charge is considered. We
demonstrate that the radiative corrections to this effect due to the vacuum
fluctuations of the characteristic size larger than the nuclear radius
and smaller than the electron Compton wave-length are enhanced
because of the strong electric field of the nucleus. The parameter that allows
one to classify the corrections is the large logarithm .
The vacuum polarization contribution is enhanced by the second power of the
logarithm. Although the self-energy and the vertex corrections do not vanish,
they contain only the first power of the logarithm. The value of the radiative
correction is 0.4% for Cs and 0.9% for Tl, Pb, and Bi. We discuss also how the
correction affects the interpretation of the experimental data on parity
nonconservation in atoms.Comment: 4 pages, 3 figures, RevTe
Collective excitations of a two-dimensional interacting Bose gas in anti-trap and linear external potentials
We present a method of finding approximate analytical solutions for the
spectra and eigenvectors of collective modes in a two-dimensional system of
interacting bosons subjected to a linear external potential or the potential of
a special form , where is the chemical
potential. The eigenvalue problem is solved analytically for an artificial
model allowing the unbounded density of the particles. The spectra of
collective modes are calculated numerically for the stripe, the rare density
valley and the edge geometry and compared with the analytical results. It is
shown that the energies of the modes localized at the rare density region and
at the edge are well approximated by the analytical expressions. We discuss
Bose-Einstein condensation (BEC) in the systems under investigations at and find that in case of a finite number of the particles the regime of BEC
can be realized, whereas the condensate disappears in the thermodynamic limit.Comment: 10 pages, 2 figures include
The use of heat and chemical penetration enhancers to increase the follicular delivery of erythromycin to the skin
Copyright © 2019. Published by Elsevier B.V.The effect of heat on the follicular absorption of drugs into the skin has not previously been investigated. In comparison to drug delivery across the continuous stratum corneum (SC), follicular absorption is known to be relatively rapid and therefore the use of short durations of heat may be particularly useful for enhancing drug delivery to the hair follicles, as well as being practical for patients to use. In this study erythromycin has been used as a model drug and the combined use of heat and chemical penetration enhancers was found to be able to synergistically increase the penetration of erythromycin into human skin via the follicular route. Moreover durations of heat application as short as 10 min in combination with particular enhancer systems were found to be sufficient to significantly increase erythromycin delivery to the skin. Overall the data indicate that the use of heat with chemical penetration enhancers offers a potentially valuable strategy for delivering drugs via the follicular route.Peer reviewedFinal Accepted Versio
Tracking a northern fulmar from a Scottish nesting site to the Charlie-Gibbs Fracture Zone : Evidence of linkage between coastal breeding seabirds and Mid-Atlantic Ridge feeding sites
Peer reviewedPublisher PD
Kaon B Parameter in Quenched QCD
I calculate the kaon B-parameter with a lattice simulation in quenched
approximation. The lattice simulation uses an action possessing exact lattice
chiral symmetry, an overlap action. Computations are performed at two lattice
spacings, about 0.13 and 0.09 fm (parameterized by Wilson gauge action
couplings beta=5.9 and 6.1) with nearly the same physical volumes and quark
masses. I describe particular potential difficulties which arise due to the use
of such a lattice action in finite volume. My results are consistent with other
recent lattice determinations using domain-wall fermions.Comment: 23 pages, Revtex, 16 postscript figure
Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances
1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags.
2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km.
3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass).
4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat.
5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far.
6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area
The β3-integrin endothelial adhesome regulates microtubule-dependent cell migration
Integrin β3 is seen as a key anti-angiogenic target for cancer treatment due to its expression on neovasculature, but the role it plays in the process is complex; whether it is pro- or anti-angiogenic depends on the context in which it is expressed. To understand precisely β3's role in regulating integrin adhesion complexes in endothelial cells, we characterised, by mass spectrometry, the β3-dependent adhesome. We show that depletion of β3-integrin in this cell type leads to changes in microtubule behaviour that control cell migration. β3-integrin regulates microtubule stability in endothelial cells through Rcc2/Anxa2-driven control of active Rac1 localisation. Our findings reveal that angiogenic processes, both in vitro and in vivo, are more sensitive to microtubule targeting agents when β3-integrin levels are reduced
- …