19 research outputs found
Distribution of kisspeptin neurones in the adult female mouse brain
International audienceKisspeptin-GPR54 signalling is essential for normal reproductive functioning. However, the distribution of kisspeptin neuronal cell bodies and their projections is not well established. The present study aimed to provide a detailed account of kisspeptin neuroanatomy in the mouse brain. Using a polyclonal rabbit antibody AC566, directed towards the final ten C-terminal amino acids of murine kisspeptin, three populations of kisspeptin-expressing cell bodies were identified in the adult female mouse brain. One exists as a dense periventricular continuum of cells within the rostral part of the third ventricle, another is found within the arcuate nucleus, and another is identified as a low-density group of scattered cells within the dorsomedial nucleus and posterior hypothalamus. Kisspeptin-immunoreactive fibres were abundant within the ventral aspect of the lateral septum and within the hypothalamus running in periventricular and ventral retrochiasmatic pathways. Notable exclusions from the kisspeptin fibre innervation were the suprachiasmatic and ventromedial nuclei. Outside of the hypothalamus, a small number of kisspeptin fibres were identified in the bed nucleus of the stria terminalis, subfornical organ, medial amygdala, paraventricular thalamus, periaqueductal grey and locus coerulus. All kisspeptin cell body and fibre immunoreactivity was absent in brain tissue from Kiss1 knockout mice. These observations provide a map of kisspeptin neurones in the mouse brain and indicate that a limited number of mostly medial hypothalamic and lateral septal brain regions are innervated by the three hypothalamic kisspeptin cell populations; the functions of these projections remain to be established
GPR54: a new therapeutic target for the modulation of the hypothalamo-gonadal axis
International audienc
Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene
International audienc
Transcriptome profiling of kisspeptin neurons from the mouse arcuate nucleus reveals new mechanisms in estrogenic control of fertility.
Kisspeptin neurons in the mediobasal hypothalamus (MBH) are critical targets of ovarian estrogen feedback regulating mammalian fertility. To reveal molecular mechanisms underlying this signaling, we thoroughly characterized the estrogen-regulated transcriptome of kisspeptin cells from ovariectomized transgenic mice substituted with 17β-estradiol or vehicle. MBH kisspeptin neurons were harvested using laser-capture microdissection, pooled, and subjected to RNA sequencing. Estrogen treatment significantly (p.adj. < 0.05) up-regulated 1,190 and down-regulated 1,139 transcripts, including transcription factors, neuropeptides, ribosomal and mitochondrial proteins, ion channels, transporters, receptors, and regulatory RNAs. Reduced expression of the excitatory serotonin receptor-4 transcript (Htr4) diminished kisspeptin neuron responsiveness to serotonergic stimulation. Many estrogen-regulated transcripts have been implicated in puberty/fertility disorders. Patients (n = 337) with congenital hypogonadotropic hypogonadism (CHH) showed enrichment of rare variants in putative CHH-candidate genes (e.g., LRP1B, CACNA1G, FNDC3A). Comprehensive characterization of the estrogen-dependent kisspeptin neuron transcriptome sheds light on the molecular mechanisms of ovary-brain communication and informs genetic research on human fertility disorders
Regulation of Chemokine Expression by NaCl Occurs Independently of Cystic Fibrosis Transmembrane Conductance Regulator in Macrophages
Chronic pulmonary inflammation and infection are the leading causes of morbidity and mortality in cystic fibrosis (CF). While the effect of mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) on airways remains controversial, some groups have demonstrated increases in Na(+) and Cl(−) in CF airway surface liquid compared to normal airways. We investigated the consequences of NaCl on pro-inflammatory chemokine and cytokine production by macrophages. Stimulation of mouse macrophages with increasing amounts of NaCl induced macrophage inflammatory protein-2 (MIP-2) and tumor necrosis factor-α (TNF-α) production. Further, co-incubation of macrophages with NaCl in the presence of either lipopolysaccharide (LPS) or TNF-α synergistically increased MIP-2 production. Both the NaCl and NaCl plus LPS responses were partially dependent on endogenous production and autocrine signaling by TNF-α. To investigate the role of CFTR in MIP-2 production, we compared the responses of wild-type and ΔF508 CF mouse macrophages to NaCl and LPS. The responses of macrophages from both strains were indistinguishable. In addition, CFTR mRNA was not expressed in macrophages. Taken together, these findings suggest that NaCl stimulates MIP-2 production by macrophages through a mechanism that is partially dependent on TNF-α but independent of macrophage CFTR expression