83 research outputs found

    A new sample of large angular size radio galaxies : I. The radio data

    Get PDF
    We present a new sample of 84 large angular size radio galaxies selected from the NRAO VLA Sky Survey. Radio sources with declination above +60º, total flux density greater than 100 mJy at 1.4 GHz and angular size larger than 4' have been selected and observed with the VLA at 1.4 and 4.9 GHz. The radio observations attempt to confirm the large angular size sources and to isolate the core emission for optical identification. In this paper, the first of a series of three, we present radio maps of 79 sources from the sample and discuss the effects of the selection criteria in the final sample. 37 radio galaxies belong to the class of giants, of which 22 are reported in this paper for the first time.Marcaide Osoro, Juan Maria, [email protected]

    A new sample of large angular size radio galaxies : III. Statistics and evolution of the grown population

    Get PDF
    We present in this paper a detailed study of a new sample of large angular size FR I and FR II radio galaxies and compare the properties of the two classes. As expected, a pure morphology based distinction of FR Is and FR IIs corresponds to a break in total radio power. The radio cores in FR Is are also weaker than in FR IIs, although there is not a well defined break power. We find that asymmetry in the structure of the sample members must be the consequence of anisotropies in the medium where the lobes expand, with orientation playing a minor role. Moreover, literature data and our observations at kiloparsec scales suggest that the large differences between the structures of FR I and FR II radio galaxies must arise from the poorly known central kiloparsec region of their host galaxies. We analyze the sub-sample of giant radio galaxies, and do not find evidence that these large objects require higher core powers. Our results are consistent with giant radio galaxies being the older population of normal FR I and FR II objects evolving in low density environments. Comparing results from our sample with predictions from the radio luminosity function we find no evidence of a possible FR II to FR I evolution. Moreover, we conclude that at z ∼ 0.1, one out of four FR II radio sources has a linear size above 500 kpc, thus being in an advanced stage of evolution (for example, older than ∼10 Myr assuming a jet-head velocity of 0.1c). Radio activity seems to be a short-lived process in active galaxies, although in some cases recurrent: five objects in our sample present signs of reactivation in their radio structures.Marcaide Osoro, Juan Maria, [email protected]

    Multi-wavelength interferometry of evolved stars using VLTI and VLBA

    Full text link
    We report on our project of coordinated VLTI/VLBA observations of the atmospheres and circumstellar environments of evolved stars. We illustrate in general the potential of interferometric measurements to study stellar atmospheres and envelopes, and demonstrate in particular the advantages of a coordinated multi-wavelength approach including near/mid-infrared as well as radio interferometry. We have so far made use of VLTI observations of the near- and mid-infrared stellar sizes and of concurrent VLBA observations of the SiO maser emission. To date, this project includes studies of the Mira stars S Ori and RR Aql as well as of the supergiant AH Sco. These sources all show strong silicate emission features in their mid-infrared spectra. In addition, they each have relatively strong SiO maser emission. The results from our first epochs of S Ori measurements have recently been published and the main results are reviewed here. The S Ori maser ring is found to lie at a mean distance of about 2 stellar radii, a result that is virtually free of the usual uncertainty inherent in comparing observations of variable stars widely separated in time and stellar phase. We discuss the status of our more recent S Ori, RR Aql, and AH Sco observations, and present an outlook on the continuation of our project.Comment: 9 pages, to appear in the proceedings of the ESO workshop "The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation VLTI Instrumentation", ESO Astrophysics Symposi

    Mid-infrared sizes of circumstellar disks around Herbig Ae/Be stars measured with MIDI on the VLTI

    Get PDF
    We present the first long baseline mid-infrared interferometric observations of the circumstellar disks surrounding Herbig Ae/Be stars. The observations were obtained using the mid-infrared interferometric instrument MIDI at the European Southern Observatory (ESO) Very Large Telescope Interferometer VLTI on Cerro Paranal. The 102 m baseline given by the telescopes UT1 and UT3 was employed, which provides a maximum full spatial resolution of 20 milli-arcsec (mas) at a wavelength of 10 μm. The interferometric signal was spectrally dispersed at a resolution of 30, giving spectrally resolved visibility information from 8 μm to 13.5 μm. We observed seven nearby Herbig Ae/Be stars and resolved all objects. The warm dust disk of HD 100546 could even be resolved in single-telescope imaging. Characteristic dimensions of the emitting regions at 10 μm are found to be from 1 AU to 10 AU. The 10 μm sizes of our sample stars correlate with the slope of the 10–25 μm infrared spectrum in the sense that the reddest objects are the largest ones. Such a correlation would be consistent with a different geometry in terms of flaring or flat (self-shadowed) disks for sources with strong or moderate mid-infrared excess, respectively. We compare the observed spectrally resolved visibilities with predictions based on existing models of passive centrally irradiated hydrostatic disks made to fit the SEDs of the observed stars. We find broad qualitative agreement of the spectral shape of visibilities corresponding to these models with our observations. Quantitatively, there are discrepancies that show the need for a next step in modelling of circumstellar disks, satisfying both the spatial constraints such as are now available from the MIDI observations and the flux constraints from the SEDs in a consistent way

    A Global View on Star Formation: The GLOSTAR Galactic Plane Survey: II Supernova Remnants in the first quadrant of the Milky Way

    Get PDF
    Context. The properties of the population of the Galactic Supernova Remnants (SNRs) are essential to our understanding of the dynamics of the Milky Way’s interstellar medium (ISM). However, the completeness of the catalog of Galactic SNRs is expected to be only ∼30%, with on order 700 SNRs yet to be detected. Deep interferometric radio continuum surveys of the Galactic plane help in rectifying this apparent deficiency by identifying low surface brightness SNRs and compact SNRs that have not been detected in previous surveys. However, SNRs are routinely confused with H ii regions, which can have similar radio morphologies. Radio spectral index, polarization, and emission at mid-infrared (MIR) wavelengths can help distinguish between SNRs and H ii regions. Aims. We aim to identify SNR candidates using continuum emission from the Karl G. Jansky Very Large Array Global view of the Star formation in the Milky Way (GLOSTAR) survey. Methods. GLOSTAR is a C-band (4–8 GHz) radio wavelength survey of the Galactic plane covering 358◦ ≤ l ≤ 60◦, |b| ≤ 1◦. The continuum images from this survey that resulted from observations in the array’s most compact configuration have an angular resolution of 18″. We searched for SNRs in these images to identify known SNRs, previously-identified SNR candidates and new SNR candidates. We study these objects in MIR surveys and the GLOSTAR polarization data to classify their emission as thermal or nonthermal. Results. We identify 157 SNR candidates, out of which 80 are new. Polarization measurements provide evidence of nonthermal emission from 9 of these candidates. We find that two previously identified candidates are filaments. We also detect emission from 91 out of 94 known SNRs in the survey region. Four of these are reclassified as H ii regions following detection in MIR surveys. Conclusions. The better sensitivity and resolution of the GLOSTAR data have led to the identification of 157 SNR candidates, along with the reclassification of several misidentified objects. We show that the polarization measurements can identify nonthermal emission, despite the diffuse Galactic synchrotron emission. These results underscore the importance of higher resolution and higher sensitivity radio continuum data in identifying and confirming SNRs

    GLOSTAR — Radio Source Catalog II: 28◦ < l < 36◦ and |b| < 1◦,VLA B-configuration

    Get PDF
    As part of the Global View on Star Formation (GLOSTAR) survey we have used the Karl G. Jansky Very Large Array (VLA) in its B-configuration to observe the part of the Galactic plane between longitudes of 28◦ and 36◦ and latitudes from −1◦ to +1◦ at the C-band (4–8 GHz). To reduce the contamination of extended sources that are not well recovered by our coverage of the (u, v)-plane we discarded short baselines that are sensitive to emission on angular scales < 4′′. The resulting radio continuum images have an angular resolution of 1.′′0, and a sensitivity of ∼ 60 μJy beam−1; making it the most sensitive radio survey covering a large area of the Galactic plane with this angular resolution. An automatic source extraction algorithm was used in combination with visual inspection to identify a total of 3325 radio sources. A total of 1457 radio sources are ≥ 7σ and comprise our highly reliable catalog; 72 of these are grouped as 22 fragmented sources, e.g., multiple components of an extended and resolved source. To explore the nature of the catalogued radio sources we searched for counterparts at millimeter and infrared wavelengths. Our classification attempts resulted in 93 H ii region candidates, 104 radio stars, 64 planetary nebulae, while most of the remaining radio sources are suggested to be extragalactic sources. We investigated the spectral indices (α, S ν ∝ να) of radio sources classified as H ii region candidates and found that many have negative values. This may imply that these radio sources represent young stellar objects that are members of the star clusters around the high mass stars that excite the H ii regions, but not these H ii regions themselves. By comparing the peak flux densities from the GLOSTAR and CORNISH surveys we have identified 49 variable radio sources, most of them with an unknown nature. Additionally, we provide the list of 1866 radio sources detected within 5 to 7σ levels
    corecore