41 research outputs found

    Growth of pea plants (Pisum sativum L.) subjected to different soil water potentials : physiological indexes

    Get PDF
    A ervilha é cultivada no Brasil Central, durante o inverno seco, exigindo para o pleno êxito da cultura o uso da irrigação. Assim, o presente trabalho se propõe a avaliar os efeitos do potencial da água no solo nos índices fisiológicos da análise quantitativa de crescimento de plantas de ervilha (Pisum sativum L.). O experimento foi montado em casa de vegetação, em solos de textura argilosa, com delineamento experimental inteiramente casualizado, com quatro tratamentos decorrentes de potenciais mínimos da água no solo (-33, -100, -200 e -1500 kPa) em três repetições, cada qual contendo duas plantas de ervilha, cultivar Caprice. Os resultados obtidos evidenciaram que a redução do potencial água no solo, induziu o decréscimo na área foliar, sem interferir no comportamento da razão de massa foliar, razão de área foliar, taxa assimilatória líquida e taxa de crescimento relativo. _________________________________________________________________________________________ ABSTRACT: Peas are cultivated in the central region of Brazil, during the dry winter, demanding for the complete success the use of irrigation. Therefore, the present work has the aim of evaluating soil water potential effects on the indexes of physiological growth analysis of peas (Pisum sativum L.). The experiment was carried out in a greenhouse using soils of clayey texture, in a fully randomized design, with four treatments, based on minimum soil water potentials (-33, -100, -200 and -1500 kPa) in three replicates, each one containing two pea plants Caprice cultivar. The results obtained indicate that the reduction of soil water potential induced the decrease of leaf area, but did not interfer on the behaviour of leaf weight ratio, leaf area ratio, net assimilation rate and relative growth rate

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Brain volumetric deficits in MAPT mutation carriers: a multisite study

    Get PDF
    Objective: MAPT mutations typically cause behavioral variant frontotemporal dementia with or without parkinsonism. Previous studies have shown that symptomatic MAPT mutation carriers have frontotemporal atrophy, yet studies have shown mixed results as to whether presymptomatic carriers have low gray matter volumes. To elucidate whether presymptomatic carriers have lower structural brain volumes within regions atrophied during the symptomatic phase, we studied a large cohort of MAPT mutation carriers using a voxelwise approach. Methods: We studied 22 symptomatic carriers (age 54.7 ± 9.1, 13 female) and 43 presymptomatic carriers (age 39.2 ± 10.4, 21 female). Symptomatic carriers’ clinical syndromes included: behavioral variant frontotemporal dementia (18), an amnestic dementia syndrome (2), Parkinson’s disease (1), and mild cognitive impairment (1). We performed voxel-based morphometry on T1 images and assessed brain volumetrics by clinical subgroup, age, and mutation subtype. Results: Symptomatic carriers showed gray matter atrophy in bilateral frontotemporal cortex, insula, and striatum, and white matter atrophy in bilateral corpus callosum and uncinate fasciculus. Approximately 20% of presymptomatic carriers had low gray matter volumes in bilateral hippocampus, amygdala, and lateral temporal cortex. Within these regions, low gray matter volume

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Birds of a feather flock together: using trait-groups to understand the effect of macropod grazing on birds in grassy habitats

    No full text
    Restoration of appropriate disturbance regimes is a high conservation priority. However, for most species, little is known about appropriate disturbance regimes to achieve defined conservation outcomes. In this context, trait-based approaches can offer a means to generalize responses to environmental change across multiple species. Here, we investigated the potential of a trait-based approach to predict the preference of birds utilizing the grassy layers for different levels of grazing by a native grazer within grassy habitats in south-eastern Australia. We tested three hypotheses: 1) birds with particular traits (i.e. large ground-foraging, small ground-foraging, aerial insectivore, and ground-nesting/concealment) will show preferences for certain levels of grazing: 2) species within the same trait group will show preferences for a similar level of grazing intensity: and 3) different bird trait groups will favor different grazing intensities Overall, we found a significant relationship between grazing intensity and the richness of aerial insectivore and large ground-foraging trait groups utilizing the grassy layer, but not for the richness of small ground-foraging and ground-nesting/concealment trait groups. We also found that the likelihood of 3/3 aerial insectivores, 4/7 large ground-foragers, 3/10 small ground-foragers, and 1/3 ground-nesting/concealment species using the grassy layer was significantly related to grazing intensity. However, we found no significant relationship between the probability of 12 species using the grassy layer and grazing intensity, with other environmental factors potentially masking grazing response. Importantly, species within the same trait group showed a preference for similar grazing intensities, and different trait groups showed preference for different grazing intensities. For example, aerial insectivores, and a single ground-nesting/concealment species were more likely to use the grassy layer at lower grazing intensities, whereas large ground-foraging birds and small ground-foraging birds were more likely to use the grassy layer at higher grazing intensities. To maintain optimal grass structure for birds with varying grass structure preferences, landscapes should contain a heterogeneous mosaic of grazing intensities

    The Science Case for 4GLS

    Get PDF
    corecore