141 research outputs found

    Magnetospectroscopy of epitaxial few-layer graphene

    Full text link
    The inter-Landau level transitions observed in far-infrared transmission experiments on few-layer graphene samples show a behaviour characteristic of the linear dispersion expected in graphene. This behaviour persists in relatively thick samples, and is qualitatively different from that of thin samples of bulk graphite.Comment: Invited short review to appear in a special issue of Solid State Communication

    Evidence for Adiabatic Magnetization of cold Dy_N Clusters

    Full text link
    Magnetic properties of Dy_N clusters in a molecular beam generated with a liquid helium cooled nozzle are investigated by Stern-Gerlach experiments. The cluster magnetizations \mu_z are measured as a function of magnetic field (B = 0 - 1.6T) and cluster size (16 < N < 56). The most important observation is the saturation of the magnetization \mu_z(B) at large field strengths. The magnetization approaches saturation following the power law |\mu_z-\mu_0| proportional to 1/\sqrt{B}, where \mu_0 denotes the magnetic moment. This gives evidence for adiabatic magnetization.Comment: 4 pages, 3 figure

    Terahertz near-field imaging of surface plasmon waves in graphene structures

    Get PDF
    International audienceWe introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale

    Cluster ionization via two-plasmon excitation

    Get PDF
    We calculate the two-photon ionization of clusters for photon energies near the surface plasmon resonance. The results are expressed in terms of the ionization rate of a double plasmon excitation, which is calculated perturbatively. For the conditions of the experiment by Schlipper et al., we find an ionization rate of the order of 0.05-0.10 fs^(-1). This rate is used to determine the ionization probability in an external field in terms of the number of photons absorbed and the duration of the field. The probability also depends on the damping rate of the surface plasmon. Agreement with experiment can only be achieved if the plasmon damping is considerably smaller than its observed width in the room-temperature single-photon absorption spectrum.Comment: 17 pages and 6 PostScript figure

    Synthesis and characterization of atomically-thin graphite films on a silicon carbide substrate

    Full text link
    This paper reports the synthesis and detailed characterization of graphite thin films produced by thermal decomposition of the (0001) face of a 6H-SiC wafer, demonstrating the successful growth of single crystalline films down to approximately one graphene layer. The growth and characterization were carried out in ultrahigh vacuum (UHV) conditions. The growth process and sample quality were monitored by low-energy electron diffraction, and the thickness of the sample was determined by core level x-ray photoelectron spectroscopy. High-resolution angle-resolved photoemission spectroscopy shows constant energy map patterns, which are very sharp and fully momentum-resolved, but nonetheless not resolution limited. We discuss the implications of this observation in connection with scanning electron microscopy data, as well as with previous studies

    Quantum size effects in Pb islands on Cu(111): Electronic-structure calculations

    Get PDF
    The appearance of "magic" heights of Pb islands grown on Cu(111) is studied by self-consistent electronic structure calculations. The Cu(111) substrate is modeled with a one-dimensional pseudopotential reproducing the essential features, i.e. the band gap and the work function, of the Cu band structure in the [111] direction. Pb islands are presented as stabilized jellium overlayers. The experimental eigenenergies of the quantum well states confined in the Pb overlayer are well reproduced. The total energy oscillates as a continuous function of the overlayer thickness reflecting the electronic shell structure. The energies for completed Pb monolayers show a modulated oscillatory pattern reminiscent of the super-shell structure of clusters and nanowires. The energy minima correlate remarkably well with the measured most probable heights of Pb islands. The proper modeling of the substrate is crucial to set the quantitative agreement.Comment: 4 pages, 4 figures. Submitte

    Formalism of collective electron excitations in fullerenes

    Full text link
    We present a detailed formalism for the description of collective electron excitations in fullerenes in the process of the electron inelastic scattering. Considering the system as a spherical shell of a finite width, we show that the differential cross section is defined by three plasmon excitations, namely two coupled modes of the surface plasmon and the volume plasmon. The interplay of the three plasmons appears due to the electron diffraction of the fullerene shell. Plasmon modes of different angular momenta provide dominating contributions to the differential cross section depending on the transferred momentum.Comment: 11 pages, 2 figures; submitted to the special issue "Atomic Cluster Collisions: Structure and Dynamics from the Nuclear to the Biological Scale" of Eur. Phys. J.

    Pairing of fermions in atomic traps and nuclei

    Full text link
    Pairing gaps for fermionic atoms in harmonic oscillator traps are calculated for a wide range of interaction strengths and particle number, and compared to pairing in nuclei. Especially systems, where the pairing gap exceeds the level spacing but is smaller than the shell splitting ω\hbar\omega, are studied which applies to most trapped Fermi atomic systems as well as to finite nuclei. When solving the gap equation for a large trap with such multi-level pairing, one finds that the matrix elements between nearby harmonic oscillator levels and the quasi-particle energies lead to a double logarithm of the gap, and a pronounced shell structure at magic numbers. It is argued that neutron and proton pairing in nuclei belongs to the class of multi-level pairing, that their shell structure follows naturally and that the gaps scale as A1/3\sim A^{-1/3} - all in qualitative agreement with odd-even staggering of nuclear binding energies. Pairing in large systems are related to that in the bulk limit. For large nuclei the neutron and proton superfluid gaps approach the asymptotic value in infinite nuclear matter: Δ1.1\Delta\simeq 1.1 MeV.Comment: 11 pages, 5 figure

    Scissors modes in triaxial metal clusters

    Get PDF
    We study the scissors mode (orbital M1 excitations) in small Na clusters, triaxial metal clusters Na12{\rm Na}_{12} and Na16{\rm Na}_{16} and the close-to-spherical Na9+{{\rm Na}_9}^+, all described in DFT with detailed ionic background. The scissors modes built on spin-saturated ground and spin-polarized isomeric states are analyzed in virtue of both macroscopic collective and microscopic shell-model treatments. It is shown that the mutual destruction of Coulomb and the exchange-correlation parts of the residual interaction makes the collective shift small and the net effect can depend on details of the actual excited state. The crosstalk with dipole and spin-dipole modes is studied in detail. In particular, a strong crosstalk with spin-dipole negative-parity mode is found in the case of spin-polarized states. Triaxiality and ionic structure considerably complicate the scissors response, mainly at expense of stronger fragmentation of the strength. Nevertheless, even in these complicated cases the scissors mode is mainly determined by the global deformation. The detailed ionic structure destroys the spherical symmetry and can cause finite M1 response (transverse optical mode) even in clusters with zero global deformation. But its strength turns out to be much smaller than for the genuine scissors modes in deformed systems.Comment: 17 pages, 5 figure

    A Simple Shell Model for Quantum Dots in a Tilted Magnetic Field

    Full text link
    A model for quantum dots is proposed, in which the motion of a few electrons in a three-dimensional harmonic oscillator potential under the influence of a homogeneous magnetic field of arbitrary direction is studied. The spectrum and the wave functions are obtained by solving the classical problem. The ground state of the Fermi-system is obtained by minimizing the total energy with regard to the confining frequencies. From this a dependence of the equilibrium shape of the quantum dot on the electron number, the magnetic field parameters and the slab thickness is found.Comment: 15 pages (Latex), 3 epsi figures, to appear in PhysRev B, 55 Nr. 20 (1997
    corecore