63 research outputs found

    Modelling of compound nucleus formation in fusion of heavy nuclei

    Full text link
    A new model that includes the time-dependent dynamics of the single-particle (s.p.) motion in conjunction with the macroscopic evolution of the system is proposed for describing the compound nucleus (CN) formation in fusion of heavy nuclei. The diabaticity initially keeps the entrance system around its contact configuration, but the gradual transition from the diabatic to the adiabatic potential energy surface (PES) leads to fusion or quasifission. Direct measurements of the probability for CN formation are crucial to discriminate between the current models.Comment: 4 pages,2 figures,1 table, Submitted to PR

    Stability of bubble nuclei through Shell-Effects

    Get PDF
    We investigate the shell structure of bubble nuclei in simple phenomenological shell models and study their binding energy as a function of the radii and of the number of neutron and protons using Strutinsky's method. Shell effects come about, on the one hand, by the high degeneracy of levels with large angular momentum and, on the other, by the big energy gaps between states with a different number of radial nodes. Shell energies down to -40 MeV are shown to occur for certain magic nuclei. Estimates demonstrate that the calculated shell effects for certain magic numbers of constituents are probably large enough to produce stability against fission, alpha-, and beta-decay. No bubble solutions are found for mass number A < 450.Comment: 9 pages and 9 figures in the eps format include

    Charm and Beauty in Particle Physics

    Full text link
    The spectra of states containing charmed and beauty quarks, and their regularities, are reviewed.Comment: 29 pages, LaTeX, 10 EPSF figures submitted separately. Presented at CERN in September, 1994 at a symposium in honor of Andre Martin To be submitted to Comments on Nuclear and Particle Physic

    Isotope thermometery in nuclear multifragmentation

    Get PDF
    A systematic study of the effect of fragment-fragment interaction, quantum statistics, γ\gamma-feeding and collective flow is made in the extraction of the nuclear temperature from the double ratio of the isotopic yields in the statistical model of one-step (Prompt) multifragmentation. Temperature is also extracted from the isotope yield ratios generated in the sequential binary-decay model. Comparison of the thermodynamic temperature with the extracted temperatures for different isotope ratios show some anomaly in both models which is discussed in the context of experimentally measured caloric curves.Comment: uuencoded gzipped file containing 20 pages of text in REVTEX format and 12 figures (Postscript files). Physical Review C (in press

    Mean-field description of ground-state properties of drip-line nuclei. (I) Shell-correction method

    Full text link
    A shell-correction method is applied to nuclei far from the beta stability line and its suitability to describe effects of the particle continuum is discussed. The sensitivity of predicted locations of one- and two-particle drip lines to details of the macroscopic-microscopic model is analyzed.Comment: 22 REVTeX pages, 13 uuencoded postscript figures available upon reques

    Equilibrium configurations of fluids and their stability in higher dimensions

    Get PDF
    We study equilibrium shapes, stability and possible bifurcation diagrams of fluids in higher dimensions, held together by either surface tension or self-gravity. We consider the equilibrium shape and stability problem of self-gravitating spheroids, establishing the formalism to generalize the MacLaurin sequence to higher dimensions. We show that such simple models, of interest on their own, also provide accurate descriptions of their general relativistic relatives with event horizons. The examples worked out here hint at some model-independent dynamics, and thus at some universality: smooth objects seem always to be well described by both ``replicas'' (either self-gravity or surface tension). As an example, we exhibit an instability afflicting self-gravitating (Newtonian) fluid cylinders. This instability is the exact analogue, within Newtonian gravity, of the Gregory-Laflamme instability in general relativity. Another example considered is a self-gravitating Newtonian torus made of a homogeneous incompressible fluid. We recover the features of the black ring in general relativity.Comment: 42 pages, 11 Figures, RevTeX4. Accepted for publication in Classical and Quantum Gravity. v2: Minor corrections and references adde

    Central Collisions of Au on Au at 150, 250 and 400 A MeV

    Get PDF
    Collisions of Au on Au at incident energies of 150, 250 and 400 A MeV were studied with the FOPI-facility at GSI Darmstadt. Nuclear charge (Z < 16) and velocity of the products were detected with full azimuthal acceptance at laboratory angles of 1-30 degrees. Isotope separated light charged particles were measured with movable multiple telescopes in an angular range of 6-90 degrees. Central collisions representing about 1 % of the reaction cross section were selected by requiring high total transverse energy, but vanishing sideflow. The velocity space distributions and yields of the emitted fragments are reported. The data are analysed in terms of a thermal model including radial flow. A comparison with predictions of the Quantum Molecular Model is presented.Comment: LateX text 62 pages, plus six Postscript files with a total of 34 figures, accepted by Nucl.Phys.

    Nuclear Fission: : A Review of Experimental Advances and Phenomenology

    Get PDF
    In the last two decades, through technological, experimental and theoretical advances, the situation in experimental fission studies has changed dramatically. With the use of advanced production and detection techniques both much more detailed and precise information can now be obtained for the traditional regions of fission research and, crucially, new regions of nuclei have become routinely accessible for fission studies.&#13; This work first of all reviews the recent developments in experimental fission techniques, in particular the resurgence of transfer-induced fission reactions with light and heavy ions, the emerging use of inverse-kinematic approaches, both at Coulomb and relativistic energies, and of fission studies with radioactive beams.&#13; The emphasis on the fission-fragment mass and charge distributions will be made in this work, though some of the other fission observables, such as prompt neutron and γ-ray emission will also be reviewed.&#13; A particular attention will be given to the low-energy fission in the so far scarcely explored nuclei in the very neutron-deficient lead region. They recently became the focus for several complementary experimental studies, such as β-delayed fission with radioactive beams at ISOLDE(CERN), Coulex-induced fission of relativistic secondary beams at FRS(GSI), and several prompt fusion-fission studies. The synergy of these approaches allows a unique insight in the new region of asymmetric fission around &lt;sup&gt;180&lt;/sup&gt;Hg, recently discovered at ISOLDE. Recent extensive theoretical efforts in this region will also be outlined.&#13; The unprecedented high-quality data for fission fragments, completely identified in &lt;i&gt;Z&lt;/i&gt; and &lt;i&gt;A&lt;/i&gt;, by means of reactions in inverse kinematics at FRS(GSI) and VAMOS(GANIL) will be also reviewed. These experiments explored an extended range of mercury-to-californium elements, spanning from the neutron-deficient to neutron-rich nuclides, and covering both asymmetric, symmetric and transitional fission regions.&#13; Some aspects of heavy-ion induced fusion-fission and quasifission reactions will be also discussed, which reveal their dynamical features, such as the fission time scale. The crucial role of the multi-chance fission, probed by means of multinucleon-transfer induced fission reactions, will be highlighted.&#13; The review will conclude with the discussion of the new experimental fission facilities which are presently being brought into operation, along with promising 'next-generation' fission approaches, which might become available within the next decade

    The nuclear collective motion

    Full text link
    Current developments in nuclear structure are discussed from a theoretical perspective. First, the progress in theoretical modeling of nuclei is reviewed. This is followed by the discussion of nuclear time scales, nuclear collective modes, and nuclear deformations. Some perspectives on nuclear structure research far from stability are given. Finally, interdisciplinary aspects of the nuclear many-body problem are outlined
    corecore