813 research outputs found

    16 x 25 Ge:Ga Detector Arrays for FIFI LS

    Get PDF
    We are developing two-dimensional 16 x 25 pixel detector arrays of both unstressed and stressed Ge:Ga photoconductive detectors for far-infrared astronomy from SOFIA. The arrays, based on earlier 5 x 5 detector arrays used on the KAO, will be for our new instrument, the Far Infrared Field Imaging Line Spectrometer (FIFI LS). The unstressed Ge:Ga detector array will cover the wavelength range from 40 to 120 microns, and the stressed Ge:Ga detector array from 120 to 210 microns. The detector arrays will be operated with multiplexed integrating amplifiers with cryogenic readout electronics located close to the detector arrays. The design of the stressed detector array and results of current measurements on several prototype 16 pixel linear arrays are reported. They demonstrate the feasibility of the current concept. ***This paper does not include Figures due to astro-ph size limitations. Please download entire file at http://fifi-ls.mpe-garching.mpg.de/spie.det.ps.gz ***Comment: 8 pages, SPIE Proceedings, Astronomical Telescopes and Instrumentation 200

    Formation of diluted III–V nitride thin films by N ion implantation

    Get PDF
    iluted III–Nₓ–V₁ˍₓ alloys were successfully synthesized by nitrogen implantation into GaAs,InP, and AlyGa1−yAs. In all three cases the fundamental band-gap energy for the ion beam synthesized III–Nₓ–V₁ˍₓ alloys was found to decrease with increasing N implantation dose in a manner similar to that observed in epitaxially grownGaNₓAs1−x and InNₓP₁ˍₓalloys. In GaNₓAs₁ˍₓ the highest value of x (fraction of “active” substitutional N on As sublattice) achieved was 0.006. It was observed that NAs is thermally unstable at temperatures higher than 850 °C. The highest value of x achieved in InNₓP₁ˍₓ was higher, 0.012, and the NP was found to be stable to at least 850 °C. In addition, the N activation efficiency in implantedInNₓP₁ˍₓ was at least a factor of 2 higher than that in GaNₓAs₁ˍₓ under similar processing conditions. AlyGa1−yNₓAs₁ˍₓ had not been made previously by epitaxial techniques. N implantation was successful in producing AlyGa1−yNₓAs₁ˍₓalloys. Notably, the band gap of these alloys remains direct, even above the value of y (y>0.44) where the band gap of the host material is indirect.This work was supported by the ‘‘Photovoltaic Materials Focus Area’’ in the DOE Center of Excellence for the Synthesis and Processing of Advanced Materials, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences under U.S. Department of Energy Contract No. DE-ACO3-76SF00098. The work at UCSD was partially supported by Midwest Research Institute under subcontractor No. AAD-9-18668-7 from NREL

    The Global Competitive Challenge For EMBA Students

    Get PDF
    This article describes the birth and development of an innovative international business course called the Global Competitive Challenge. The paper highlights the process of developing the course and how the course is being updated to meet the requirements of current participants in an EMBA program

    Implications of the Tribolium genome project for pest biology

    Get PDF
    Implications of the Tribolium genome project for pest biology The universal availability of the complete Tribolium castaneum genome sequence assembly and annotation (Richards et al., 2008) and concomitant development of the versatile Tribolium genome browser, BeetleBase (Kim et al., 2010, http://beetlebase.org/) open new realms of possibility for stored product pest control by greatly simplifying the task of connecting biology and behavior with underlying molecular mechanisms. This genome has enabled sequence similarity searches that have resulted in a flood of new discovery involving thousands of genes with important functions in digestion, osmoregulation, metamorphosis, olfaction, xenobiotic metabolism, vision, and embryonic and larval growth and development. The value of the T. castaneum genome sequence is greatly enhanced by the availability of a sophisticated functional genomic toolkit for laboratory studies of this insect. These tools include high-resolution physical and genetic maps, genomic and cDNA libraries, balancer chromosomes, and effective and reliable techniques for specific knockout of any target gene via RNA interference (RNAi). In this paper we briefly discuss just two areas of Tribolium biology research that are being revitalized by the availability of the genome sequence, namely olfaction and exoskeleton, or “smell and skin”

    Stressed detector arrays for airborne astronomy

    Get PDF
    The development of stressed Ge:Ga detector arrays for far-infrared astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel detector array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) detector array. Each element of the three element array performs as well as the researchers' best single channel detector, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-infrared detector arrays is also discussed

    The Tribolium castaneum cell line TcA: a new tool kit for cell biology

    Get PDF
    The red flour beetle, Tribolium castaneum, is an agriculturally important insect pest that has been widely used as a model organism. Recently, an adherent cell line (BCIRL-TcA-CLG1 or TcA) was developed from late pupae of the red flour beetle. Next generation transcriptome sequencing of TcA cells demonstrated expression of a wide variety of genes associated with specialized functions in chitin metabolism, immune responses and cellular and systemic RNAi pathways. Accordingly, we evaluated the sensitivity of TcA cells to dsRNA to initiate an RNAi response. TcA cells were highly sensitive to minute amounts of dsRNA, with a minimum effective dose of 100 pg/mL resulting in significant suppression of gene expression. We have also developed a plasmid containing two TcA-specific promoters, the promoter from the 40S ribosomal protein subunit (TC006550) and a bi-directional heat shock promoter (TcHS70) from the intergenic space between heat shock proteins 68a and b. These promoters have been employed to provide high levels of either constitutive (TC006550) or inducible (TcHS70) gene expression of the reporter proteins. Our results show that the TcA cell line, with its sensitivity to RNAi and functional TcA-specific promoters, is an invaluable resource for studying basic molecular and physiological questions

    Cryogenic light detectors with enhanced performance for rare events physics

    Full text link
    We have developed and tested a new way of coupling bolometric light detectors to scintillating crystal bolometers based upon simply resting the light detector on the crystal surface, held in position only by gravity. This straightforward mounting results in three important improvements: (1) it decreases the amount of non-active materials needed to assemble the detector, (2) it substantially increases the light collection efficiency by minimizing the light losses induced by the mounting structure, and (3) it enhances the thermal signal induced in the light detector thanks to the extremely weak thermal link to the thermal bath. We tested this new technique with a 16 cm2^2 Ge light detector with thermistor readout sitting on the surface of a large TeO2_2 bolometer. The light collection efficiency was increased by greater than 50\% compared to previously tested alternative mountings. We obtained a baseline energy resolution on the light detector of 20~eV RMS that, together with increased light collection, enabled us to obtain the best α\alpha vs ÎČ/Îł\beta/\gamma discrimination ever obtained with massive TeO2_2 crystals. At the same time we achieved rise and decay times of 0.8 and 1.6 ms, respectively. This superb performance meets all of the requirements for the CUPID (CUORE Upgrade with Particle IDentification) experiment, which is a 1-ton scintillating bolometer follow up to CUORE.Comment: 6 pages, 4 figure

    Analysis of repetitive DNA distribution patterns in the Tribolium castaneum genome

    Get PDF
    Approximately 30% of the Tribolium castaneum genome is comprised of repetitive DNA. These repeats accumulate in certain regions in the assembled T. castaneum genome, these regions might be derived from the large blocks of pericentric heterochromatin in Tribolium chromosomes
    • 

    corecore