176 research outputs found

    Combustor liner construction

    Get PDF
    A combustor liner is fabricated from a plurality of individual segments each containing counter/parallel Finwall material and are arranged circumferentially and axially to define the combustion zone. Each segment is supported by a hook and ring construction to an opened lattice frame with sufficient tolerance between the hook and ring to permit thermal expansion with a minimum of induced stresses

    Engine inlet distortion in a 9.2 percent scale vectored thrust STOVL model in ground effect

    Get PDF
    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft which can operate from remote locations, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot low speed wind tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results are presented which show the engine inlet distortions (both temperature and pressure) in a 9.2 percent scale vectored thrust STOVL model in ground effects. Results are shown for the forward nozzle splay angles of 0 degrees, -6 degrees, and 18 degrees. The model support system had 4 degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity was varied from 8 to 23 knots

    Hot gas ingestion characteristics and flow visualization of a vectored thrust STOVL concept

    Get PDF
    A 9.2 percent scale short takeoff and vertical landing (STOVL) hot gas ingestion model was designed and built by McDonnell Douglas Corporation (MCAIR) and tested in the NASA Lewis Research Center 9- by 15-Foot Low Speed Wind Tunnel (LSWT). Hot gas ingestion, the entrainment of heated engine exhaust into the inlet flow field, is a key development issue for advanced short takeoff and vertical landing aircraft. The Phase 1 test program, conducted by NASA Lewis and McDonnell Douglas Corporation, evaluated the hot ingestion phenomena and control techniques and Phase 2 test program which was conducted by NASA Lewis are both reported. The Phase 2 program was conducted at exhaust nozzles temperatures up to 1460 R and utilized a sheet laser system for flow visualization of the model flow field in and out of ground effects. Hot gas ingestion levels were measured for the several forward nozzle splay configurations and with flow control/lift improvement devices which reduced the hot gas ingestion. The model support system had four degrees of freedom, heated high pressure air for nozzle flow, and a suction system exhaust for inlet flow. The headwind (freestream) velocity for Phase 1 was varied from 8 to 90 kn, with primary data taken in the 8 to 23 kn headwind velocity range. Phase 2 headwind velocity varied from 10 to 23 kn. Results of both Phase 1 and 2 are presented. A description of the model, facility, a new model support system, and a sheet laser illumination system are also provided. Results are presented over a range of main landing gear height (model height) above the ground plane at a 10 kn headwind velocity. The results contain the compressor face pressure and temperature distortions, total pressure recovery, compressor face temperature rise, and the environmental effects of the hot gas. The environmental effects include the ground plane temperature and pressure distributions, model airframe heating, and the location of the ground flow separation. Results from the sheet laser flow visualization test are also shown

    Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    Get PDF
    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots

    Downstream Approaches to Phosphorus Management in Agricultural Landscapes: Regional Applicability and Use

    Get PDF
    This review provides a critical overview of conservation practices that are aimed at improving water quality by retaining phosphorus (P) downstream of runoff genesis. The review is structured around specific downstream practices that are prevalent in various parts of the United States. Specific practices that we discuss include the use of controlled drainage, chemical treatment of waters and soils, receiving ditch management, and wetlands. The review also focuses on the specific hydrology and biogeochemistry associated with each of those practices. The practices are structured sequentially along flowpaths as you move through the landscape, from the edge-of-field, to adjacent aquatic systems, and ultimately to downstream P retention. Often practices are region specific based on geology, cropping practices, and specific P related problems and thus require a right practice, and right place mentality to management. Each practice has fundamental P transport and retention processes by systems that can be optimized bymanagementwith the goal of reducing downstream P loading after P has left agricultural fields. The management of P requires a system-wide assessment of the stability of P in different biogeochemical forms (particulate vs. dissolved, organic vs. inorganic), in different storage pools (soil, sediment, streams etc.), and under varying biogeochemical and hydrological conditions that act to convert P from one form to another and promote its retention in or transport out of different landscape components. There is significant potential of hierarchically placing practices in the agricultural landscape and enhancing the associated P mitigation. But an understanding is needed of short- and long-term P retention mechanisms within a certain practice and incorporating maintenance schedules if necessary to improve P retention times and minimize exceeding retention capacity

    RGS12 Interacts with the SNARE-binding Region of the Ca v 2.2 Calcium Channel

    Get PDF
    Activation of GABAB receptors in chick dorsal root ganglion (DRG) neurons inhibits the Cav2.2 calcium channel in both a voltage-dependent and voltage-independent manner. The voltage-independent inhibition requires activation of a tyrosine kinase that phosphorylates the alpha1 subunit of the channel and thereby recruits RGS12, a member of the "regulator of G protein signaling" (RGS) proteins. Here we report that RGS12 binds to the SNARE-binding or "synprint" region (amino acids 726-985) in loop II-III of the calcium channel alpha1 subunit. A recombinant protein encompassing the N-terminal PTB domain of RGS12 binds to the synprint region in protein overlay and surface plasmon resonance binding assays; this interaction is dependent on tyrosine phosphorylation and yet is within a sequence that differs from the canonical NPXY motif targeted by other PTB domains. In electrophysiological experiments, microinjection of DRG neurons with synprint-derived peptides containing the tyrosine residue Tyr-804 altered the rate of desensitization of neurotransmitter-mediated inhibition of the Cav2.2 calcium channel, whereas peptides centered about a second tyrosine residue, Tyr-815, were without effect. RGS12 from a DRG neuron lysate was precipitated using synprint peptides containing phosphorylated Tyr-804. The high degree of conservation of Tyr-804 in the SNARE-binding region of Cav2.1 and Cav2.2 calcium channels suggests that this region, in addition to the binding of SNARE proteins, is also important for determining the time course of the modulation of calcium current via tyrosine phosphorylation

    Standardized research protocols enable transdisciplinary research of climate variation impacts in corn production systems

    Get PDF
    The important questions about agriculture, climate, and sustainability have become increasingly complex and require a coordinated, multifaceted approach for developing new knowledge and understanding. A multistate, transdisciplinary project was begun in 2011 to study the potential for both mitigation and adaptation of corn-based cropping systems to climate variations. The team is measuring the baseline as well as change of the system\u27s carbon (C), nitrogen (N), and water footprints, crop productivity, and pest pressure in response to existing and novel production practices. Nine states and 11 institutions are participating in the project, necessitating a well thought out approach to coordinating field data collection procedures at 35 research sites. In addition, the collected data must be brought together in a way that can be stored and used by persons not originally involved in the data collection, necessitating robust procedures for linking metadata with the data and clearly delineated rules for use and publication of data from the overall project. In order to improve the ability to compare data across sites and begin to make inferences about soil and cropping system responses to climate across the region, detailed research protocols were developed to standardize the types of measurements taken and the specific details such as depth, time, method, numbers of samples, and minimum data set required from each site. This process required significant time, debate, and commitment of all the investigators involved with field data collection and was also informed by the data needed to run the simulation models and life cycle analyses. Although individual research teams are collecting additional measurements beyond those stated in the standardized protocols, the written protocols are used by the team for the base measurements to be compared across the region. A centralized database was constructed to meet the needs of current researchers on this project as well as for future use for data synthesis and modeling for agricultural, ecosystem, and climate sciences

    Winter Rye Cover Crop Biomass Production, Degradation, and Nitrogen Recycling

    Get PDF
    Winter rye (Secale cereale L.) cover crop (RCC) use in corn (Zea mays L.) and soybean [Glycine max. (L.) Merr.] production can alter N dynamics compared to no RCC. The objectives of this study were to evaluate RCC biomass production (BP) and subsequent RCC degradation (BD) and N recycling in a no-till corn–soybean (CS) rotation. Aboveground RCC was sampled at spring termination for biomass dry matter (DM), C, and N. To evaluate BD and remaining C and N, RCC biomass was put into nylon mesh bags, placed on the soil surface, and collected multiple times over 105 d. Treatments included rye cover crop following soybean (RCC-FS) and corn (RCC-FC), and prior-year N applied to corn. Overall, the RCC BP and N was low due to low soil profile NO3–N. Across sites and years, the greatest BP was with RCC-FC that received 225 kg N ha–1 (1280 kg DM ha–1), with similar N uptake as with RCC-FS (27 kg N ha–1). The RCC biomass and N remaining decreased over time following an exponential decay. An average 62% biomass with RCC-FS and RCC-FC degraded after 105 d; however, N recycled was greater with RCC-FS than RCC-FC [22 (80%) vs. 14 (64%) kg N ha–1, respectively], and was influenced by the RCC C/N ratio. The RCC did not recycle an agronomically meaningful amount of N, which limited N that could potentially be supplied to corn. Rye cover crops can conserve soil N, and with improved management and growth, recycling of crop-available N should increase

    Increasing crop rotational diversity can enhance cereal yields

    Get PDF
    Diversifying agriculture by rotating a greater number of crop species in sequence is a promising practice to reduce negative impacts of crop production on the environment and maintain yields. However, it is unclear to what extent cereal yields change with crop rotation diversity and external nitrogen fertilization level over time, and which functional groups of crops provide the most yield benefit. Here, using grain yield data of small grain cereals and maize from 32 long-term (10–63 years) experiments across Europe and North America, we show that crop rotational diversity, measured as crop species diversity and functional richness, enhanced grain yields. This yield benefit increased over time. Only the yields of winter-sown small grain cereals showed a decline at the highest level of species diversity. Diversification was beneficial to all cereals with a low external nitrogen input, particularly maize, enabling a lower dependence on nitrogen fertilisers and ultimately reducing greenhouse gas emissions and nitrogen pollution. The results suggest that increasing crop functional richness rather than species diversity can be a strategy for supporting grain yields across many environments
    • …
    corecore