1,910 research outputs found

    Conditional strategies and the evolution of cooperation in spatial public goods games

    Full text link
    The fact that individuals will most likely behave differently in different situations begets the introduction of conditional strategies. Inspired by this, we study the evolution of cooperation in the spatial public goods game, where besides unconditional cooperators and defectors, also different types of conditional cooperators compete for space. Conditional cooperators will contribute to the public good only if other players within the group are likely to cooperate as well, but will withhold their contribution otherwise. Depending on the number of other cooperators that are required to elicit cooperation of a conditional cooperator, the latter can be classified in as many types as there are players within each group. We find that the most cautious cooperators, such that require all other players within a group to be conditional cooperators, are the undisputed victors of the evolutionary process, even at very low synergy factors. We show that the remarkable promotion of cooperation is due primarily to the spontaneous emergence of quarantining of defectors, which become surrounded by conditional cooperators and are forced into isolated convex "bubbles" from where they are unable to exploit the public good. This phenomenon can be observed only in structured populations, thus adding to the relevance of pattern formation for the successful evolution of cooperation.Comment: 7 two-column pages, 7 figures; accepted for publication in Physical Review

    Correlation of Positive and Negative Reciprocity Fails to Confer an Evolutionary Advantage: Phase Transitions to Elementary Strategies

    Get PDF
    Economic experiments reveal that humans value cooperation and fairness. Punishing unfair behavior is therefore common, and according to the theory of strong reciprocity, it is also directly related to rewarding cooperative behavior. However, empirical data fail to confirm that positive and negative reciprocity are correlated. Inspired by this disagreement, we determine whether the combined application of reward and punishment is evolutionarily advantageous. We study a spatial public goods game, where in addition to the three elementary strategies of defection, rewarding, and punishment, a fourth strategy that combines the latter two competes for space. We find rich dynamical behavior that gives rise to intricate phase diagrams where continuous and discontinuous phase transitions occur in succession. Indirect territorial competition, spontaneous emergence of cyclic dominance, as well as divergent fluctuations of oscillations that terminate in an absorbing phase are observed. Yet, despite the high complexity of solutions, the combined strategy can survive only in very narrow and unrealistic parameter regions. Elementary strategies, either in pure or mixed phases, are much more common and likely to prevail. Our results highlight the importance of patterns and structure in human cooperation, which should be considered in future experiments

    Self-Organized Ordering of Nanostructures Produced by Ion-Beam Sputtering

    Get PDF
    We study the self-organized ordering of nanostructures produced by ion-beam sputtering (IBS) of targets amorphizing under irradiation. By introducing a model akin to models of pattern formation in aeolian sand dunes, we extend consistently the current continuum theory of erosion by IBS. We obtain new non-linear effects responsible for the in-plane ordering of the structures, whose strength correlates with the degree of ordering found in experiments. Our results highlight the importance of redeposition and surface viscous flow to this nanopattern formation process.Comment: 4 pages, 2 figure

    Note and Comment

    Get PDF
    The Law School; Pleading Estoppel; Libels on Person and on Property; The Conflict Between a Patentee\u27s Right to Monopoly and a State Anti-Monopoly Statut

    Dynamical charge and spin density wave scattering in cuprate superconductor

    Full text link
    We show that a variety of spectral features in high-T_c cuprates can be understood from the coupling of charge carriers to some kind of dynamical order which we exemplify in terms of fluctuating charge and spin density waves. Two theoretical models are investigated which capture different aspects of such dynamical scattering. The first approach leaves the ground state in the disordered phase but couples the electrons to bosonic degrees of freedom, corresponding to the quasi singular scattering associated with the closeness to an ordered phase. The second, more phenomological approach starts from the construction of a frequency dependent order parameter which vanishes for small energies. Both theories capture scanning tunneling microscopy and angle-resoved photoemission experiments which suggest the protection of quasiparticles close to the Fermi energy but the manifestation of long-range order at higher frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy

    Phase separation in the vicinity of "quantum critical" doping concentration: implications for high temperature superconductors

    Full text link
    A general quantitative measure of the tendency towards phase separation is introduced for systems exhibiting phase transitions or crossovers controlled by charge carrier concentration. This measure is devised for the situations when the quantitative knowledge of various contributions to free energy is incomplete, and is applied to evaluate the chances of electronic phase separation associated with the onset of antiferromagnetic correlations in high-temperature cuprate superconductors. The experimental phenomenology of lanthanum- and yittrium-based cuprates was used as input to this analysis. It is also pointed out that Coulomb repulsion between charge carriers separated by the distances of 1-3 lattice periods strengthens the tendency towards phase separation by accelerating the decay of antiferromagnetic correlations with doping. Overall, the present analysis indicates that cuprates are realistically close to the threshold of phase separation -- nanoscale limited or even macroscopic with charge density varying between adjacent crystal planes

    The Structure on Invariant Measures of C1C^1 generic diffeomorphisms

    Full text link
    Let Λ\Lambda be an isolated non-trival transitive set of a C1C^1 generic diffeomorphism f\in\Diff(M). We show that the space of invariant measures supported on Λ\Lambda coincides with the space of accumulation measures of time averages on one orbit. Moreover, the set of points having this property is residual in Λ\Lambda (which implies the set of irregular+^+ points is also residual in Λ\Lambda). As an application, we show that the non-uniform hyperbolicity of irregular+^+ points in Λ\Lambda with totally 0 measure (resp., the non-uniform hyperbolicity of a generic subset in Λ\Lambda) determines the uniform hyperbolicity of Λ\Lambda

    A Two-Player Game of Life

    Full text link
    We present a new extension of Conway's game of life for two players, which we call p2life. P2life allows one of two types of token, black or white, to inhabit a cell, and adds competitive elements into the birth and survival rules of the original game. We solve the mean-field equation for p2life and determine by simulation that the asymptotic density of p2life approaches 0.0362.Comment: 7 pages, 3 figure
    • …
    corecore