We show that a variety of spectral features in high-T_c cuprates can be
understood from the coupling of charge carriers to some kind of dynamical order
which we exemplify in terms of fluctuating charge and spin density waves. Two
theoretical models are investigated which capture different aspects of such
dynamical scattering. The first approach leaves the ground state in the
disordered phase but couples the electrons to bosonic degrees of freedom,
corresponding to the quasi singular scattering associated with the closeness to
an ordered phase. The second, more phenomological approach starts from the
construction of a frequency dependent order parameter which vanishes for small
energies. Both theories capture scanning tunneling microscopy and angle-resoved
photoemission experiments which suggest the protection of quasiparticles close
to the Fermi energy but the manifestation of long-range order at higher
frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy