463 research outputs found
Scaling behavior of temperature-dependent thermopower in CeAu2Si2 under pressure
We report a combined study of in-plane resistivity and thermopower of the
pressure-induced heavy fermion superconductor CeAu2Si2 up to 27.8 GPa. It is
found that thermopower follows a scaling behavior in T/T* almost up to the
magnetic critical pressure pc ~ 22 GPa. By comparing with resistivity results,
we show that the magnitude and characteristic temperature dependence of
thermopower in this pressure range are governed by the Kondo coupling and
crystal-field splitting, respectively. Below pc, the superconducting transition
is preceded by a large negative thermopower minimum, suggesting a close
relationship between the two phenomena. Furthermore, thermopower of a variety
of Ce-based Kondo-lattices with different crystal structures follows the same
scaling relation up to T/T* ~ 2.Comment: 6 pages, 4 figures. Supplementary Material available on reques
Effect of disorder on the pressure-induced superconducting state of CeAu2Si2
CeAu2Si2 is a newly discovered pressure-induced heavy fermion superconductor
which shows very unusual interplay between superconductivity and magnetism
under pressure. Here we compare the results of high-pressure measurements on
single crystalline CeAu2Si2 samples with different levels of disorder. It is
found that while the magnetic properties are essentially sample independent,
superconductivity is rapidly suppressed when the residual resistivity of the
sample increases. We show that the depression of bulk Tc can be well understood
in terms of pair breaking by nonmagnetic disorder, which strongly suggests an
unconventional pairing state in pressurized CeAu2Si2. Furthermore, increasing
the level of disorder leads to the emergence of another phase transition at T*
within the magnetic phase, which might be in competition with
superconductivity.Comment: 7 pages, 7 figure
The Dominant Role of Critical Valence Fluctuations on High Superconductivity in Heavy Fermions
Despite almost 40 years of research, the origin of heavy-fermion
superconductivity is still strongly debated. Especially, the pressure-induced
enhancement of superconductivity in CeCuSi away from the magnetic
breakdown is not sufficiently taken into consideration. As recently reported in
CeCuSi and several related compounds, optimal superconductivity occurs
at the pressure of a valence crossover, which arises from a virtual critical
end point at negative temperature . In this context, we did a
meticulous analysis of a vast set of top-quality high-pressure electrical
resistivity data of several Ce-based heavy fermion compounds. The key novelty
is the salient correlation between the superconducting transition temperature
and the valence instability parameter , which is in
line with theory of enhanced valence fluctuations. Moreover, it is found that,
in the pressure region of superconductivity, electrical resistivity is governed
by the valence crossover, which most often manifests in scaling behavior. We
develop the new idea that the optimum superconducting of a given
sample is mainly controlled by the compound's and limited by
non-magnetic disorder. In this regard, the present study provides compelling
evidence for the crucial role of critical valence fluctuations in the formation
of Cooper pairs in Ce-based heavy fermion superconductors besides the
contribution of spin fluctuations near magnetic quantum critical points, and
corroborates a plausible superconducting mechanism in strongly correlated
electron systems in general.Comment: Supplementary Material follows after the bibliograph
Mott transition and collective charge pinning in electron doped Sr2IrO4
We studied the in-plane dynamic and static charge conductivity of electron
doped Sr2IrO4 using optical spectroscopy and DC transport measurements. The
optical conductivity indicates that the pristine material is an indirect
semiconductor with a direct Mott-gap of 0.55 eV. Upon substitution of 2% La per
formula unit the Mott-gap is suppressed except in a small fraction of the
material (15%) where the gap survives, and overall the material remains
insulating. Instead of a zero energy mode (or Drude peak) we observe a soft
collective mode (SCM) with a broad maximum at 40 meV. Doping to 10% increases
the strength of the SCM, and a zero-energy mode occurs together with metallic
DC conductivity. Further increase of the La substitution doesn't change the
spectral weight integral up to 3 eV. It does however result in a transfer of
the SCM spectral weight to the zero-energy mode, with a corresponding reduction
of the DC resistivity for all temperatures from 4 to 300 K. The presence of a
zero-energy mode signals that at least part of the Fermi surface remains
ungapped at low temperatures, whereas the SCM appears to be caused by pinning a
collective frozen state involving part of the doped electrons
Binding, thermodynamics, and selectivity of a non-peptide antagonist to the melanocortin-4 receptor
The melanocortin-4 receptor (MC4R) is a potential drug target for treatment of obesity, anxiety, depression, and sexual dysfunction. Crystal structures for MC4R are not yet available, which has hindered successful structure-based drug design. Using microsecond-scale molecular-dynamics simulations, we have investigated selective binding of the non-peptide antagonist MCL0129 to a homology model of human MC4R (hMC4R). This approach revealed that, at the end of a multi-step binding process, MCL0129 spontaneously adopts a binding mode in which it blocks the agonistic-binding site. This binding mode was confirmed in subsequent metadynamics simulations, which gave an affinity for human hMC4R that matches the experimentally determined value. Extending our simulations of MCL0129 binding to hMC1R and hMC3R, we find that receptor subtype selectivity for hMC4R depends on few amino acids located in various structural elements of the receptor. These insights may support rational drug design targeting the melanocortin systems
- …