2,351 research outputs found

    Comparison of the spatial QRS-T angle derived from digital ECGs recorded using conventional electrode placement with that derived from Mason-Likar electrode position

    Get PDF
    Background: The spatial QRS-T angle is ideally derived from orthogonal leads. We compared the spatial QRS-T angle derived from orthogonal leads reconstructed from digital 12-lead ECGs and from digital Holter ECGs recorded with the Mason-Likar (M-L) electrode positions. Methods and results: Orthogonal leads were constructed by the inverse Dower method and used to calculate spatial QRS-T angle by (1) a vector method and (2) a net amplitude method, in 100 volunteers. Spatial QRS-T angles from standard and M-L ECGs differed significantly (57° ± 18° vs 48° ± 20° respectively using net amplitude method and 53° ± 28° vs 48° ± 23° respectively by vector method; p < 0.001). Difference in amplitudes in leads V4–V6 was also observed between Holter and standard ECGs, probably due to a difference in electrical potential at the central terminal. Conclusion: Mean spatial QRS-T angles derived from standard and M-L lead systems differed by 5°–9°. Though statistically significant, these differences may not be clinically significant

    The origin of the Fe K features in Markarian 205 and Markarian 509

    Full text link
    We examine the 3-10 keV EPIC spectra of Mrk 205 and Mrk 509 to investigate their Fe K features. The most significant feature in the spectra of both objects is an emission line at 6.4 keV. The spectra can be adequately modelled with a power law and a relatively narrow (sigma < 0.2 keV) Fe K alpha emission line. Better fits are obtained when an additional Gaussian emission line, relativistic accretion-disk line, or Compton reflection from cold material, is added to the spectral model. We obtain similar goodness of fit for any of these three models, but the model including Compton reflection from cold material offers the simplest, physically self-consistent solution, because it only requires one reprocessing region. Thus the Fe K spectral features in Mrk 205 and Mrk 509 do not present strong evidence for reprocessing in the inner, relativistic parts of accretion disks.Comment: accepted for publication in MNRA

    Automatic segmentation and classification methods using optical coherence tomography angiography (Octa): A review and handbook

    Get PDF
    Optical coherence tomography angiography (OCTA) is a promising technology for the non-invasive imaging of vasculature. Many studies in literature present automated algorithms to quantify OCTA images, but there is a lack of a review on the most common methods and their comparison considering multiple clinical applications (e.g., ophthalmology and dermatology). Here, we aim to provide readers with a useful review and handbook for automatic segmentation and classification methods using OCTA images, presenting a comparison of techniques found in the literature based on the adopted segmentation or classification method and on the clinical application. Another goal of this study is to provide insight into the direction of research in automated OCTA image analysis, especially in the current era of deep learning

    HeartCycle: User interaction and patient education

    Get PDF
    Cardiovascular Diseases are the most prevalent and serious chronic conditions existing nowadays. They are the primary cause of death in the world and generate enormous expenditures to the health systems. Tele-monitoring and personal health systems have proven to be good options for tackling this situation; however they are still lacking many functionalities. It is necessary to find solutions that allow health professionals to follow up patients more closely and efficiently, while reducing the non-adherence of patients to the treatment regime. HeartCycle research project (partially funded by the European Commission) has developed a personal health system for cardiovascular diseases management with the aim to address this problem. This paper describes the Patient Loop of this solution, including the different components, the adopted user interaction, and the implemented patients education and coaching strategy

    Thermal modification and alkyl ketene dimer effects on the surface protection of deodar cedar (Cedrus deodara Roxb.) wood

    Get PDF
    The aim of this research was to evaluate the multiple effects of both thermal modification and alkyl ketene dimer (AKD) on the deodar cedar (Cedrus deodara Roxb.) wood surface, before and after an irradiation test. The physical and chemical changes that occurred on the cedar wood samples due to the combined effect of these modifications were evaluated by measuring their wettability and colour and using attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The surface analysis by XPS showed the expected variability among the sampled layers for unmodified and thermally modified cedar wood samples and a uniform composition after the AKD coverage, regardless of their pre-treatments. The FTIR spectra before the irradiation test showed that the hydrophobicity of the samples was ensured by the formation of carbonyl groups originating from the reaction between the AKD and hydroxyl groups of cellulose, which is related to the presence of the absorption band between 1700 cm&minus;1 and 1750 cm&minus;1. Markedly, after the irradiation test, a degradation of the amorphous cellulose component occurred, showing that photoisomerisation to the enolic form took place. Overall, although uniform AKD coverage was derived from the surface analysis and wetting test, the combined ATR-FTIR results and colour measurements showed that it could not provide permanent protection to the underlying wood structure due to its own tendency to degrade mainly in colour over time, under the action of UV rays and atmospheric agents

    Multi-Walled Carbon Nanotube-Induced Gene Expression Biomarkers for Medical and Occupational Surveillance

    Get PDF
    As the demand for multi-walled carbon nanotube (MWCNT) incorporation into industrial and biomedical applications increases, so does the potential for unintentional pulmonary MWCNT exposure, particularly among workers during manufacturing. Pulmonary exposure to MWCNTs raises the potential for development of lung inflammation, fibrosis, and cancer among those exposed; however, there are currently no effective biomarkers for detecting lung fibrosis or predicting the risk of lung cancer resulting from MWCNT exposure. To uncover potential mRNAs and miRNAs that could be used as markers of exposure, this study compared in vivo mRNA and miRNA expression in lung tissue and blood of mice exposed to MWCNTs with in vitro mRNA and miRNA expression from a co-culture model of human lung epithelial and microvascular cells, a system previously shown to have a higher overall genome-scale correlation with mRNA expression in mouse lungs than either cell type grown separately. Concordant mRNAs and miRNAs identified by this study could be used to drive future studies confirming human biomarkers of MWCNT exposure. These potential biomarkers could be used to assess overall worker health and predict the occurrence of MWCNT-induced diseases

    XMM-Newton spectroscopy of high redshift quasars

    Full text link
    We present XMM-Newton X-ray spectra and optical photometry of four high redshift (z=2.96-3.77) quasars, [HB89] 0438-436, [HB89] 2000-330, [SP89] 1107+487 and RX J122135.6+280613; of these four objects the former two are radio-loud, the latter two radio-quiet. Model fits require only a power law with Galactic absorption in each case; additional intrinsic absorption is also needed for [HB89] 0438-436 and RX J122135.6+280613. The spectra are hard (Gamma \~1.7 for [HB89] 0438-436, [HB89] 2000-330 and ~1.4 for RX J122135.6+280613) with the exception of [SP89]~1107+487 which is softer (Gamma ~2.0); the combined Galactic and intrinsic absorption of lower energy X-rays in the latter source is much less significant than in the other three. The two intrinsically unabsorbed sources have greater optical fluxes relative to the X-ray contributions at the observed energies. While there is no need to include reflection or iron line components in the models, our derived upper limits (99% confidence) on these parameters are not stringent; the absence of these features, if confirmed, may be explained in terms of the high power law contribution and/or a potentially lower albedo due to the low disc temperature. However, we note that the power-law spectrum can be produced via mechanisms other than the Comptonization of accretion disc emission by a corona; given that all four of these quasars are radio sources at some level we should also consider the possibility that the X-ray emission originates, at least partially, in a jet.Comment: Accepted for publication in MNRA

    Emerging pharmacotherapy of tinnitus

    Get PDF
    Tinnitus, the perception of sound in the absence of an auditory stimulus, is perceived by about 1 in 10 adults, and for at least 1 in 100, tinnitus severely affects their quality of life. Because tinnitus is frequently associated with irritability, agitation, stress, insomnia, anxiety and depression, the social and economic burdens of tinnitus can be enormous. No curative treatments are available. However, tinnitus symptoms can be alleviated to some extent. The most widespread management therapies consist of auditory stimulation and cognitive behavioral treatment, aiming at improving habituation and coping strategies. Available clinical trials vary in methodological rigor and have been performed for a considerable number of different drugs. None of the investigated drugs have demonstrated providing replicable long-term reduction of tinnitus impact in the majority of patients in excess of placebo effects. Accordingly, there are no FDA or European Medicines Agency approved drugs for the treatment of tinnitus. However, in spite of the lack of evidence, a large variety of different compounds are prescribed off-label. Therefore, more effective pharmacotherapies for this huge and still growing market are desperately needed and even a drug that produces only a small but significant effect would have an enormous therapeutic impact. This review describes current and emerging pharmacotherapies with current difficulties and limitations. In addition, it provides an estimate of the tinnitus market. Finally, it describes recent advances in the tinnitus field which may help overcome obstacles faced in the pharmacological treatment of tinnitus. These include incomplete knowledge of tinnitus pathophysiology, lack of well-established animal models, heterogeneity of different forms of tinnitus, difficulties in tinnitus assessment and outcome measurement and variability in clinical trial methodology. © 2009 Informa UK Ltd.Fil: Langguth, Berthold. Universitat Regensburg; AlemaniaFil: Salvi, Richard. State University of New York; Estados UnidosFil: Elgoyhen, Ana Belen. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; Argentin
    • …
    corecore