708 research outputs found
Compressive Object Tracking using Entangled Photons
We present a compressive sensing protocol that tracks a moving object by
removing static components from a scene. The implementation is carried out on a
ghost imaging scheme to minimize both the number of photons and the number of
measurements required to form a quantum image of the tracked object. This
procedure tracks an object at low light levels with fewer than 3% of the
measurements required for a raster scan, permitting us to more effectively use
the information content in each photon.Comment: 10 pages, 4 figure
Time Dependent Floquet Theory and Absence of an Adiabatic Limit
Quantum systems subject to time periodic fields of finite amplitude, lambda,
have conventionally been handled either by low order perturbation theory, for
lambda not too large, or by exact diagonalization within a finite basis of N
states. An adiabatic limit, as lambda is switched on arbitrarily slowly, has
been assumed. But the validity of these procedures seems questionable in view
of the fact that, as N goes to infinity, the quasienergy spectrum becomes
dense, and numerical calculations show an increasing number of weakly avoided
crossings (related in perturbation theory to high order resonances). This paper
deals with the highly non-trivial behavior of the solutions in this limit. The
Floquet states, and the associated quasienergies, become highly irregular
functions of the amplitude, lambda. The mathematical radii of convergence of
perturbation theory in lambda approach zero. There is no adiabatic limit of the
wave functions when lambda is turned on arbitrarily slowly. However, the
quasienergy becomes independent of time in this limit. We introduce a
modification of the adiabatic theorem. We explain why, in spite of the
pervasive pathologies of the Floquet states in the limit N goes to infinity,
the conventional approaches are appropriate in almost all physically
interesting situations.Comment: 13 pages, Latex, plus 2 Postscript figure
The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory
We report on the design, deployment, and first results from a scintillation
detector deployed at the Murchison Radio-astronomy Observatory (MRO). The
detector is a prototype for a larger array -- the Square Kilometre Array
Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays
with the Murchison Widefield Array and the low-frequency component of the
Square Kilometre Array. The prototype design has been driven by stringent
limits on radio emissions at the MRO, and to ensure survivability in a desert
environment. Using data taken from Nov.\ 2018 to Feb.\ 2019, we characterize
the detector response while accounting for the effects of temperature
fluctuations, and calibrate the sensitivity of the prototype detector to
through-going muons. This verifies the feasibility of cosmic ray detection at
the MRO. We then estimate the required parameters of a planned array of eight
such detectors to be used to trigger radio observations by the Murchison
Widefield Array.Comment: 17 pages, 14 figures, 3 table
Pulse-driven quantum dynamics beyond the impulsive regime
We review various unitary time-dependent perturbation theories and compare
them formally and numerically. We show that the Kolmogorov-Arnold-Moser
technique performs better owing to both the superexponential character of
correction terms and the possibility to optimize the accuracy of a given level
of approximation which is explored in details here. As an illustration, we
consider a two-level system driven by short pulses beyond the sudden limit.Comment: 15 pages, 5 color figure
Development of novel bioassays to detect soluble and aggregated Huntingtin proteins on three technology platforms
Huntington’s disease is caused by a CAG / polyglutamine repeat expansion. Mutated CAG repeats undergo somatic instability, resulting in tracts of several hundred CAGs in the brain; and genetic modifiers of Huntington’s disease have indicated that somatic instability is a major driver of age of onset and disease progression. As the CAG repeat expands, the likelihood that exon 1 does not splice to exon 2 increases, resulting in two transcripts that encode full-length huntingtin protein, as well as the highly pathogenic and aggregation-prone exon 1 huntingtin protein. Strategies that target the huntingtin gene or transcripts are a major focus of therapeutic development. It is essential that the levels of all isoforms of huntingtin protein can be tracked, to better understand the molecular pathogenesis, and to assess the impact of huntingtin protein-lowering approaches in preclinical studies and clinical trials. Huntingtin protein bioassays for soluble and aggregated forms of huntingtin protein are in widespread use on the homogeneous time-resolved fluorescence and Meso Scale Discovery platforms, but these do not distinguish between exon 1 huntingtin protein and full-length huntingtin protein. In addition, they are frequently used to quantify huntingtin protein levels in the context of highly expanded polyglutamine tracts, for which appropriate protein standards do not currently exist. Here, we set out to develop novel huntingtin protein bioassays to ensure that all soluble huntingtin protein isoforms could be distinguished. We utilized the zQ175 Huntington’s disease mouse model that has ∼190 CAGs, a CAG repeat size for which protein standards are not available. Initially, 30 combinations of six antibodies were tested on three technology platforms: homogeneous time-resolved fluorescence, amplified luminescent proximity homogeneous assay and Meso Scale Discovery, and a triage strategy was employed to select the best assays. We found that, without a polyglutamine-length-matched standard, the vast majority of soluble mutant huntingtin protein assays cannot be used for quantitative purposes, as the highly expanded polyglutamine tract decreased assay performance. The combination of our novel assays, with those already in existence, provides a tool-kit to track: total soluble mutant huntingtin protein, soluble exon 1 huntingtin protein, soluble mutant huntingtin protein (excluding the exon 1 huntingtin protein) and total soluble full-length huntingtin protein (mutant and wild type). Several novel aggregation assays were also developed that track with disease progression. These selected assays can be used to compare the levels of huntingtin protein isoforms in a wide variety of mouse models of Huntington’s disease and to determine how these change in response to genetic or therapeutic manipulations
Neurophysiology
Contains research objectives and reports on three research projects.National Aeronautics and Space Administration (Grant NsG-496)U.S. Air Force (Aeronautical Systems Division) under Contract AF33 (616)-7783The Teagle Foundation, Inc.National Institutes of Health (Grant MH-04737-03)National Institutes of Health (Grant NB-04897-01)National Science Foundation (Grant G-16526)Bell Telephone Laboratories, Inc
Theoretical Analysis of Quantum Ghost Imaging Through Turbulence
Atmospheric turbulence generally affects the resolution and visibility of an image in long-distance imaging. In a recent quantum ghost imaging experiment [P. B. Dixon et al., Phys. Rev. A 83, 051803 (2011)], it was found that the effect of the turbulence can nevertheless be mitigated under certain conditions. This paper gives a detailed theoretical analysis to the setup and results reported in the experiment. Entangled photons with a finite correlation area and a turbulence model beyond the phase screen approximation are considered
Neurology
Contains research objectives and reports on six research projects.U.S. Public Health Service (B-3055)U.S. Public Health Service (B-3090)Office of Naval Research (Nonr-1841 (70))Air Force (AF33(616)-7588)Air Force (AFAFOSR-155-63)Air Force (AFAFOSR-155-63)Army Chemical Corps (DA-18-108-405-Cml-942)National Science Foundation (Grant G-16526
Assets and domestic units: methodological challenges for longitudinal studies of poverty dynamics
Tracking change in assets access and ownership in longitudinal research is difficult. Assets are rarely assigned to individuals. Their benefit and management are spread across domestic units which morph over time. We review the challenges of using assets to understand poverty dynamics, and tracking the domestic units that own and manage assets. Using case studies from longitudinal research we demonstrate that assets can afford useful insights into important change
- …