
XXVI. NEUROPHYSIOLOGY

W. S. McCulloch R. C. Gesteland Diane Major
F. S. Axelrod M. C. Goodall L. M. Mendell
H. A. Baldwin B. H. Howland W. F. Pickard
P. O. Bishop W. L. Kilmer W. H. Pitts
M. Blum K. Kornacker Helga Schiff
J. E. Brown W. J. Lennon A. Taub
S. Frenk J. Y. Lettvin P. D. Wall

RESEARCH OBJECTIVES

1. Basic Theory

The general problem of reliable computation in vertebrate central nervous systems

has been solved in principle.1 Also, neurophysiologists are making rapid progress on
the functional organization of specialized regions in such systems. But no one has yet
reported a way for thinking effectively about how the brain stem reticular system per-
forms its task of committing an entire organism to either one mode of behavior or
another.

2-4
Our problem is to construct a theory for the reticular system which is compatible

with known neuroanatomy and neurophysiology, and which will lead to testable hypotheses
concerning its operation.

Our first approach was through the theory of ordinary one-dimensional iterative

logic nets.5-7 But all of the crucial questions in this theory turned out to be recursively
unsolvable when considered generally, and combinatorially intractable when particular-
ized with the required degrees of dependency among the variables.

Our second approach was through the theory of coupled nonlinear oscillators, but
we soon found that there is not nearly enough of the right kind of mathematics to be of
much help in our problem.

All we can report at the moment is that we are embarked on a kind of iterative net
statistical decision theory which is comprehensive, versatile, and penetrating enough
to stand a reasonable chance of success.

W. L. Kilmer, W. S. McCulloch

References

1. Cf. W. S. McCulloch, Biological Computers, IRE Trans., Vol. EC-4, No. 3,
pp. 190-192, 1957; M. A. Arbib, Brains, Machines and Mathematics (McGraw-Hill
Publishing Company, New York, in press); S. Winograd and J. D. Cowan, Reliable
Computation in the Presence of Noise (The M.I.T. Press, Cambridge, Mass., 1963).

2. M. Scheibel and A. Scheibel, Biological models for command automata, Mitre
Report 55-3, First Congress on the Information System Sciences, November 1962.

3. H. Jasper and others (eds.), The Reticular Formation of the Brain, Proc. Henry
Ford Hospital International Symposium (Little, Brown and Company, Boston, 1958).

This work was supported in part by the Bell Telephone Laboratories, Inc.; The
Teagle Foundation, Inc.; the National Science Foundation (Grant G-16526); the National
Institutes of Health (Grants MH-04737-03 and NB-04897-01); the U.S. Air Force (Aero-
nautical Systems Division) under Contract AF33 (616)-7783; and the National Aeronautics
and Space Administration (Grant NsG-496).

QPR No. 72 233



(XXVI. NEUROPHYSIOLOGY)

4. E. R. Ramey and D. S. O'Doherty (eds.), Electrical Studies on the Unanesthetized
Brain (Harper and Row, New York, 1960).

5. F. C. Hennie III, Iterative Arrays of Logical Circuits (The M.I.T. Press,
Cambridge, Mass., 1961).

6. W. L. Kilmer, On dynamic switching in one-dimensional logic networks (Infor-
mation and Control, in press).

7. W. L. Kilmer, Topics in the theory of one-dimensional iterative networks (to
be published in Information and Control).

2. Project Plans

(a) The Nature of Biological Membrane. For some time we have felt that the per-
formance of cell membrane could be understood in terms of the logical consequences
of two or three extremely simple and reasonable assumptions. We are now hopeful
about the outcome of this work. But it appears that there are several elementary, but
lengthy, experiments to be done with tracers on semipermeable membranes, and these
must be finished before we are willing to commit ourselves. The development is only
distantly related to, and is also more transparent than, the current theories based on
irreversible thermodynamics.

W. F. Pickard, J. Y. Lettvin

(b) The Nature of Form-Function Relations in Neurons. After Lettvin and Maturana
proposed certain anatomical features as underlying the operation of retinal ganglion cells
in the frog, the question arose as to whether it would be possible to test the notion.
During this past year we discovered that the use of time constants of adaptation suggested
the combinatorials that were proposed. This finding has done much to hearten us to
make a more exact statement of connectivity, and we are now engaged in setting up a
quantitative study.

S. Frenk, J. Y. Lettvin

(c) The Character of Certain Receptor Processes. It was suggested by Lettvin, in
his analysis of color vision, that some receptors may have to be characterized by two
variables at their outputs. For example, imagine a receptor like a rod that has a photo-
sensitive pigment attached to the membrane. Let every patch of membrane with pigment
on it have an equal effect at the output. Let a pigment molecule, on receipt of a quantum,
first change in such a way as to open a channel for ions not at equilibrium with the
membrane potential, thus causing a current flow. Thereafter the pigment further changes
and either moves away from the membrane or becomes attached in a different way so as
to open a channel only for ionic species at equilibrium with the membrane potential. In
this way, the signal imposed by light at any instant is attenuated by a weighted integral
of the amount of light shining in the immediate past (there is also a restoration process)
and this process yields a total signal current which is logarithmically, or quasilogarith-
mically, related to the average intensity of light. Such a receptor process has two degrees
of freedom. The idea that certain stimuli increase signal current while others attenu-
ate that current by division is useful when one suspects combinatorials of stimuli to be
taken at the very input. Some of the results of Gesteland on the olfactory mucosa suggest
that such a process occurs there. We expect to examine this in some detail. A pre-
liminary report has been prepared.

R. C. Gesteland, W. H. Pitts, J. Y. Lettvin

QPR No. 72 234



(XXVI. NEUROPHYSIOLOGY)

(d) Properties of Cerebellar Cells. The writer reported in Quarterly Progress
Report No. 69 (pages 241-246) on the curious combinatorials of stimuli necessary to
excite cells in the cerebellum of the frog. This research has continued and the results
will be presented as a doctoral dissertation in 1964.

F. S. Axelrod

(e) Properties of Second-Order Vestibular Neurons in Frogs. The ganglion cells
of the three major vestibular nuclei are related to the firing pattern of the different
vestibular branches in definite ways that are still difficult to define. We intend to try
to define these functions.

Helga Schiff, J. Y. Lettvin

(f) Properties of Second-Order Olfactory Neurons in Frogs. There seems to be an
indication that the transients recorded on the surface of the olfactory lobe are not only
related to the firing of mitral and other cells but also to glomerular activity. At any
rate, the slower transients look suspiciously as if they arise from primary processes.
This is only a hint thus far, but will be pursued, since the difficulty of interpreting pri-
mary receptor processes may be eased by getting some notion of how the information
appears aggregated at the junctions in olfactory lobe.

H. A. Baldwin, J. Y. Lettvin

(g) Is the Rapid Water Movement in Some Plants Attributable to an Ion Pump? The
current explanation of the very quick changes in turgor of some cells in Mimosa is that
the osmotic pressure changes are brought about by the breaking up of starch. We sus-
pect that an alternative is the movement of water by something like a potassium pump.
This idea will be subjected to test during the early part of 1964 by Barbara Pickard.

J. Y. Lettvin

(h) Color Vision. The views reported in part in Quarterly Progress Report No. 70
(pages 327-337) will be carried farther by psychological studies, rather than by physi-
ological experiments on monkeys.

J. Y. Lettvin

(i) Instrumentation Projects. Divers instruments will be built as the occasion
arises, if the research demands them and industry is incapable of furnishing them.
(Barbara Pickard will be connected with this project.)

H. A. Baldwin, J. Y. Lettvin

(j) Models of Electrochemical Processes. There is some reason to hope that some
of the theory of weak interactions may be useful in a general theory of strong electro-
lytes. This idea will be pursued to test for adequacy.

W. H. Pitts

(k) Physical Optics. There are enough tricks of design left in physical optics that
one can say the field is far from exhausted. This is particularly true when one wants
to deal with the dioptrics of living eyes. Some of our results have appeared in Quarterly
Progress Reports No. 67 (pages 197-204) and No. 71 (pages 267-273), and we intend to
look for still more.

B. H. Howland

QPR No. 72 235



(XXVI. NEUROPHYSIOLOGY)

3. Problems of Sensory Projection Pathways

During the past year, we have concentrated on two major lines of approach to the
problems of cutaneous sensory mechanisms. The first has dealt with the control system
situated about the first central synapse where nerve fibers from the skin converge on
cells in the dorsal part of the spinal cord. We have shown that the very small cells
scattered throughout the region of these synapses and which make up the substantia gelat-
inosa are involved in modulating the transmission of impulses across this first junction.
This censorship of arriving nerve impulses is affected by previous activity in the same
pathway, by activity in neighboring areas of skin, by intense activity in distant areas,
particularly in paws and face, and by stimulation of the cerebellum, mid-brain, pons,
and medulla. The censorship mechanism seems to be in continuous action, and we
believe that it is best studied by steady stimuli, rather than by sudden brief changes
in the environment. The mechanisms that we have seen in the cat would predict inter-
actions between various types of skin stimuli, and we have carried out concomitant
experiments on man to examine these hypotheses. These psychological experiments
have shown that there is a most interesting interaction in man between light-pressure
stimuli and electrical stimulation. We have published some of this work in Brain and
in the Journal of Physiology, and two other papers will appear in the latter journal in
1964. In the coming year, we shall pursue the study of the censorship mechanism in an
attempt to find something of its role in the normal functioning of the animal.

Our second line of approach is an attempt to discover the language used by the skin
in telling the brain about the location of the stimulus. We are studying two reflexes that
require the motor mechanisms to know the exact location of the stimulus. The first is
the scratch or swipe reflex, and the second is the eye blink. We are studying the path-
ways over which the information is carried both in normal animals and in frogs and sal-
amanders who have been operated on in their youth. If dorsal and ventral skin are
reversed in the tadpole, the scratch reflex of the adult frog is aimed at the embryolog-
ical position of the skin, and not at its actual position, so that it is evident that some
message is going from skin to central nervous system which tells the nature of the skin
rather than its position. We hope to discover the nature of this message by microelec-
trode studies of the cord. Similar work is being done on amphibia in which an additional
eye is implanted on the head. The extra eye will generate a blink reflex in the normal
eye if it is touched, and so we know that nerves are somehow capable of telling the brain
that they are in cornea and not in ordinary skin. This problem has been studied in nor-
mal frogs; a paper based on Karl Kornacker's doctoral dissertation has appeared in
Experimental Neurology, and this work will continue.

A. Taub, K. Kornacker, Diane Major, P. D. Wall

A. ALGORITHMIC THEORIES OF GROWTH AND DIFFERENTIATION

This report is a summary of a paper that has been submitted for the Biophysical

Society Annual Meeting to be held in Chicago, February 26-28, 1964.

The analogy of growth and differentiation to the unfolding of a computer program is

obvious. No programs yet devised, however, satisfy the essential requirement of a

biological model, which is functional stability in the face of a fluctuating environment.

This poses a certain antithesis: on the one hand, analog systems possess only a local

stability; on the other, digital systems can, by functional redundancy, achieve stability

in the large.

A model combining these features closely reflects what is known about cellular dif-

ferentiation and morphogenesis. That is, each cell contains the basic genetic code

QPR No. 72 236



(XXVI. NEUROPHYSIOLOGY)

represented by the substitution rules R of Thue 2 associative system, together with cur-

rent word S i , and address A. (for next application of R). S. determines the rate constants
1 1 3

of the cell metabolism regarded as a nonlinear system. Finally, the concentrations of

metabolites operate a threshold control system CS which determines A i and the next

application of R. This model is computable, but its main value at present would appear

to be as a conceptual framework in which to discuss problems of epigenesis.

M. C. Goodall

References

1. W. S. McCulloch, The Stability of Biological Systems, Brookhaven Symp. 10,
207 (1957).

2. M. Davis, Computability and Unsolvability (McGraw-Hill Book Company,
New York, 1958).

3. B. Goodwin, Temporal Organization in Cells (Academic Press, Inc., New York,
1963).

B. MEASURES ON THE COMPUTATION SPEED OF PARTIAL

RECURSIVE FUNCTIONS

Given sufficient time, a man can perform all of the operations of a modern digital

computer. The value of the computer, therefore, lies in the speed with which it oper-

ates, not in the particular operations that it performs. The intent of this report is to

define precisely this concept of speed of computation, and to derive some theorems that

characterize it.

1. The Measure Function 4

It is natural to associate with a computer program P. both the function .i that it com-

putes and a measure function i that might indicate the speed of the program. For

example, i(x) might be the number of symbols printed or erased during the computation

of ( (x) (by means of P ), or the number of times that the computer changes state, or

the number of seconds that elapse from the moment that the computer starts until the

time at which it stops, or even the amount of tape used in the computation. From another

point of view, the computation of ci(x) could be interpreted as a proof of the appropriate

statement l(x) = y. Di(x) would then be the length of a proof terminating in a string of

the form i(x) = y.

2. Applications of the Measure Function 4

It is evident that the measure function is useful in comparing the speed of two pro-

grams for the same function. If programs P. and P. serve to compute the same function1 J

QPR No. 72 237



(XXVI. NEUROPHYSIOLOGY)

4i = 4j and if i.(x) < Dj(x) for all x, then P. is a "quicker" program than P..

This measure is also linked with the difficulty of computation. For example, the

function 22x naturally takes more time to compute than the function 2 x, since the answer

takes so much longer to print, but a function with values 0 and 1 which takes as long to
ax

compute as 2 must have difficulties inherent in its computation.

Fermat, ca. 1650, conjectured that 2 2x+1 is prime for all non-negative integers x.

This he verified for x = 0 through x = 4, and, without further evidence, he challenged

his comtemporaries to disprove it. Euler accepted the challenge, and, with character-

istic cunning, proved that 22 +1 = 641 X 6, 700, 417 is not a prime. Since his time, a

number of persons have investigated this conjecture for x larger than 5. In all cases

tried, they have found that 22x+1 has proper factors. Fermat's conjecture can be

reformulated in terms of the function

1 if 2 x+1 is prime

0 otherwise.

The evidence suggests the hypothesis: f(x) = 0 for x > 5, and if true, a quick program

for the computation of f muxt exist. Such a program simply sees to it that an output 1

is printed for inputs x less than 5 and that a 0 is printed for inputs x greater than 5.

If, on the other hand, it can be shown that every program that computes f is slower

than the quick program suggested above, the hypothesis must be false. Hence the meas-

ure provides important information about this function. Unfortunately, the results of

this report do not suffice to provide this information, but we take a step in the right

direction by defining the measure function and deriving some of its properties.

3. M-Computers

For clarity, it is essential to distinguish between computers and their mathematical

models, which we call M-Computers. There are to be thought of as ideal devices that

can be programmed to compute any partial recursive function. We pick one such device

here as standard: The standard M-Computer is a device equipped with a container for

cards, a tape scanner, and a tape that is infinite in both directions. The tape is divided

into squares along its length and the scanner can look at one square at a time. The

device is equipped to print one of the symbols B(blank), 0, 1, .. ., 9 on the square that

it is examining and shift the tape to right or left by one square. The container can hold

an arbitrarily large but finite number of cards, called the program. On each card is

printed a single 5-tuple <iSi' S , D, q . The symbols qi, i = 0, 1, 2, .. . are internal

states, S. is one of the symbols B, 0, 1, . . . 9, and D is a direction R(right) or L(left).
1

When the device is in state qi and scans the symbol S., it prints the symbol S., shifts

QPR No. 72 238



(XXVI. NEUROPHYSIOLOGY)

the tape to right or left as dictated by D, and changes its internal state to qj. If the

device is in state qk and scans the symbol S k , and if no card in the container has printed

on it a 5 -tuple of the form <qk' Sk .. . , then the device stops. Any program is allowed,

subject to the condition that any two cards must differ at either the first internal state

qi or the first symbol S..
1

We can associate with each program a partial recursive function c as follows: The

program is placed in the container, an input integer x is written in radix 10 on the tape,

the scanner is placed over the rightmost digit of x, and the device is put in state q. The

device then operates in accordance with the instructions printed in the program. If it

never stops, we say that the function #(x), which it computes, diverges. If it does stop,

we let C(x) be the integer that remains on the tape after all B's are cancelled.

We can effectively list the programs P , P 1 . . for a standard M-Computer, their

associated partial recursive functions #o, 1' .'.. ( i is computed by Pi), and their

measure functions ( o , 1, . .. defined by the statement: Di(x) diverges if p(x) diverges,

and Di(x) is the number of seconds required to compute i(x) if ci(x) converges.

The standard M-Computer with a program in its container is a Turing machine.

A basic result of recursive function theory states that for a large class of idealized

computers, a function that is computable by one such device is computable by all others.

Hence it is unnecessary for most authors to distinguish among them. It is essential for

us to make this distinction, however, since we are concerned with measure functions,

and since the particular measure function associated with a program must depend on our

choice of computer. In fact, we shall define an M-Computer abstractly in terms of the

measure functions associated with its programs.

DEFINITION: An M-Computer C is a list of pairs of partial recursive functions

(o o' o) , 1. ~ ( 2  ... where (o 1 'I ... is the enumeration of all partial

recursive functions as determined by the standard M-Computer, and ..o 2
is an enumeration of partial recursive functions called measure functions, with the prop-

erties:

(i) For all i and x, Pi(x) converges iff Wi(x) converges.

(ii) There exists a total recursive function a such that for all i and x

a(i, x, y) = if (x) =
0 otherwise.

NOTATION: We use f, g, and h to denote arbitrary partial recursive functions, and
th

the symbol 0i to denote the i partial recursive function in our standard listing. To

every partial recursive function f there corresponds infinitely many different i's for

which 0i = f. Given such an i, we may sometimes write f. for .i and F.i for . in order
i 1 equals f.

to emphasize that 4. equals f.

QPR No. 72 239



(XXVI. NEUROPHYSIOLOGY)

We now give some examples to indicate how the measure function may be interpreted.
EXAMPLE 1: We have defined bi(x) to be the number of seconds required to compute

ci(x) on the standard M-Computer. Property (i) of the measure functions states that

ci(x) converges iff its computation takes a finite time (Di(x)). Similarly, property (ii)
states that it is effectively possible to determine whether or not Pi(x) converges in y
seconds. One begins the computation of Ci(x) with stop watch in hand; if the computation
takes exactly y seconds, we let a(i, x, y) = 1; otherwise, we let a(i, x, y) = 0.

EXAMPLE 2: The measure function might measure the number of squares of tape
used in the computation. Take the standard M-Computer and let

y if Pi(x) converges and y squares of tape are used

in the computation

Si(x) =

divergent if Pi(x) diverges.

Clearly, Pi(x) converges if and only if Di(x) converges. A simple argument based on
the number of possible machine tape configurations that involve a fixed finite amount of
tape proves that a is total recursive. Hence C is an M-Computer.

EXAMPLE 3: Begin the computation of 9 (x) with the standard M-Computer. Let
ci (x) be the number of symbols required to write the program Pi, plus the number of

state changes during the computation of Ci(x), plus the number of squares of tape used.
Then C is an M-Computer.

EXAMPLE 4: Let C' be some characterization other than the standard M-Computer.
Denote the programs and corresponding partial recursive functions of C' by

P' , P', P'o 1, 2'

Under what conditions may we assume that o = ', = ... ? If the enumeration
2 o 0 1 1

theorem and the s-m-n theorem are to hold true for C', it can easily be shown that

there must exist total recursive functions g and h such that '(i) = . and = 9h(i) for
g (i) = 1 1 h(i)

all i. If, in addition, there exists a total recursive function k such that k (i) = . and
k( i) 1

k(i) > i for all i, then g and h can be taken to be 1-1 recursive functions. By means
of a Schrbder-Bernstein type of proof, it can then be shown that there exists a 1-1 onto
total recursive function f such that (i) = 9i for all i. Without loss of generality, we
may then assume that f is the identity function. It follows, we hope, that the choice of
a standard M-Computer in the definition given above is not too demanding.

In order to compute a.(x), we must first find a partial recursive function. = .,
since we have a program for computing 9j but none for computing b i. Our first theorem

QPR No. 72 240



(XXVI. NEUROPHYSIOLOGY)

asserts that there is an effective procedure for going from an index i for a measure

function to an index j for the equivalent partial recursive function in our standard listing.

THEOREM 1: To each M-Computer C there corresponds a total recursive function

p such that 4. = cP for all i.

PROOF: We begin by defining a function f(i, x) = i (x). Formally,

(i, x) if a(i, x, y) = 1
f(i,) = divergent otherwise.

Since a is a total recursive function, it is effectively possible to compute f, hence by

Church's thesis, f is a partial recursive function. The s-m-n theorem ensures the

existence of a total recursive function P such that P )(x) = f(i, x) for all i and x.

Therefore Pi ) = D for all i, and P is the desired total recursive function. Q.E.D.

Since the recursive functions are countable, it follows immediately that the class of

M-Computers is also countable.

4. A Theorem by Rabin

Suppose that you want to find a function f such that no matter what program you

choose to compute it, the calculation of f(x) always takes more that 2x seconds. All that

you need to do is to pick a function f with values so large that it takes 2x seconds just

to print the answer. A similar method can be used to find a function that takes more

than g(x) seconds to compute, g being any total recursive function. A nontrivial prob-

lem, however, would be to find a function f with values 0 and 1 such that every program

for f necessarily takes more than g(x) seconds to compute for almost all x (for all x

greater than some integer xo). (Question: Why for almost all x?) By means of an

interesting diagonalization process, M. O. Rabin proved the existence of such 0-1 valued

functions. 3 His theorem, with a somewhat different proof, is reproduced here. The

process involved is an essential feature of most of the proofs in this report.

THEOREM 2 (Rabin): Let C be an M-Computer and let g be any total recursive

function. Then there exists a total recursive function f with values 0 and 1 such that

for every index i for f, Fi (x) exceeds g(x) for almost all x.

PROOF: We construct f: First, a G6del table is made which contains the symbol

4r(c) in the intersection of row r and column c.

0 1 2 3 4

0 o(0) o ( 1) p(2) o(3
01 ,(0) (3 ) 0 1

1 Ol 1 11

2 322(1) 02(2) e 2(4)

3 4 3(0) e 43(2) 3(3) (4)

4 4(0) 4 ( 1) P4 (2) ' 4 (3) 04 (4)

QPR No. 72 241



(XXVI. NEUROPHYSIOLOGY)

Then all entries qi(x) that converge in g(x) seconds at most are circled, that is, 4 (x) is

circled if i (x) < g(x). This circling can be done effectively, since i(x) < g(x) <-

a(i, x,y) = 1 for some y less than or equal to g(x), and g is total recursive.

The next stop is to go to column 0: If o(0) is circled, check it, cancel the remaining

part of row 0, and go to column 1. If t (0) is not circled, go directly to column 1. In

general, when you reach any column, x, check the first circled uncancelled entry in that

column, ci(x), such that i < x. Then cancel all entries to the right of ci(x) . If no such

entry exists, do nothing to column x. Go to column x+1. This check procedure is clearly

effective. Moreover, a row with infinitely many circled entries must have 1 and only 1

checked entry.

To compute f(x), first determine if one of the entries o(X), c 1(x) ... , x(X) is

checked (by the procedure above, one of these entries at most can be checked). If, say,

pi(x) is checked, it must converge (since Pi(x) converges iff i.(x) converges, and (x) <
g(x)). Compute qi(x) and let

1 if (x) = 0

f(x) =

0 C otherwise.

If none of the entries is checked, let f(x) = 1. Clearly, f is a total recursive function.

To see that it is the desired function, suppose that i is an index for f and that, to the

contrary, there exist infinitely many x such that Fi(x) < g(x). Then, according to the

procedure given above, row i must have a single checked entry i(y). But, by definition

of f, f(y)# i (y), hence i cannot be an index for f, which is a contradiction. Therefore

f must be the desired function. Q.E.D.

The next theorem and its proof is an immediate generalization of Rabin's theorem

to all partial recursive functions. The statement of this theorem will be needed as a

lemma subsequently in this report.

THEOREM 3: Let C be an M-Computer and let g be a partial recursive function.

Then there corresponds to g a 0-1 valued partial recursive function f such that f(x)

converges iff g(x) converges; if j is any index for f, then for almost all x F.(x) > g(x)

whenever g(x) converges. Moreover, there is a total recursive function, y , which takes

any index i for g into an index y(i) for f.

PROOF: Fix an integer i and construct a list of pairs of integers according to the

following procedure (these pairs correspond to the checked entries in the proof of

Rabin's theorem)4

Stage 0: If Gi(0) = 0 (i.e., a(i, 0, 0) = 1) and Do(0) < g(0) ( G (0) = 0 - gi(0) con-

verges), put (0, 0) in the list; otherwise, do nothing. Go to stage 1.

Stage n = (p, q): Determine whether or not Gi(p) = q. If not, go to stage n+l. If

so, then gi(p) converges. See if any of the function values o(p), P

QPR No. 72 242



(XXVI. NEUROPHYSIOLOGY)

are less than or equal to gi(p). (This can be done with the a-function.) If not, go to stage

n+l. If so, then J s (p) ' . s t (p) (s l < ' ' < s t < p) will be less than or equal to gi(p).
1 t

If all of the pairs (s l , zl ) ..... (s t zt) appear in the list thus far constructed for some

values of z ..... , zt , go to stage n+l. If not, pick the smallest integer sk such that

(sk' Zk) does not appear in the list thus far constructed for any value of zk. (This integer

s k can be chosen effectively, since the list thus far constructed is finite.) Put (s k ' p ) in
the list. Go to stage n+1.

The list of pairs obtained in this way is obviously recursively enumerable. Note that

for all s, s', p, p', if (s,p) appears in the list, then (s,p') and (s', p) do not appear in the

list: (s,p') cannot appear for obvious reasons; (s',p) cannot appear since to do so, it

must appear in stage n = <p, q> where Gi(p) = q, but this is precisely the stage in which

(s,p) must be placed in the list, and at each stage at most one pair of integers can be

placed in the list.

We now give an effective procedure for computing a partial recursive function h of

two variables i and x from which we shall obtain the function f by an application of the

s-m-n theorem. To compute h(i, p): First, compute gi(p). If it diverges, let h(i,p)

diverge. If gi(p) converges, then GGi(p) = q for some integer q. In this case, generate

the list and see if (s,p) appears in it for some integer s. (If it does appear, then it must

do so in stage n = <p, q>; hence it is effectively possible to determine if (s, p) is in the

list for some s.) If (s,p) does not appear in the list for some s, let h(i, p) = 1. If it does

appear, then ps(p) converges and (s(p)< gi(p) (by construction of the list) and s is

unique (for if t # s, then (t,p) does not appear in the list). Let

0 if 4s(p) * 0

h(i, p) =
Sif Ps(p) = 0.

Clearly, h is a partial recursive function, so that, by the s-m-n theorem, there exists

a total recursive function y such that f (i)(x) = h(i, x) for all i and x.

We assert that y is the desired total recursive function of the theorem: If i is an

index for a partial recursive function g, then y(i) is an index for a partial recursive

function f such that, for all x, f(x) converges iff g(x) converges and f(x) = 0 or 1 if it

converges, by definition of h. We want to prove that if j is any index for f, then Fj(x) >
g(x) for almost all x whenever g(x) converges. Suppose on the contrary that for infinitely

many x, g(x) converges and F (x)< g(x). Let xl, x 2, ... be the subset of these x that

satisfy xk > j. Then (j, xk ) does not appear in the list for any integer xk , for otherwise

h(i, xk) fJ(xk) (by definition of h and the fact that gi(xk) converges), which is a con-

tradiction; thus, as we said, (j, xk) does not appear in the list. But at stage n =

<x k , G (X)>, (j, xk ) is a candidate for the list, since Fj(x k ) - g(xk). Hence there exists

an integer s less than j such that Ds(k) < g(xk) and (s, z) does not appear in the list

QPR No. 72 243



(XXVI. NEUROPHYSIOLOGY)

up to that point for any integer z; this must be true for x = x l , x 2 .. .. . But there can
be at most j such integers s, namely s = 0, ..... , s = j - i. But there are an infinite
number of integers xk and thus eventually the integers s must be exhausted, which is a
contradiction. Q.E.D.

5. Bounds on the Measure Function

Suppose that f(x) is defined in terms of p(x), q(x), ... Then one might expect that
the time that it takes to compute f with a "reasonable" program (one that does not do
complicated and unnecessary intermediate calculations) is bounded by a function of the
time that it takes to compute p(x), q(x), ..... For example, the enumeration theorem 2

asserts the existence of a partial recursive function f defined by f(< i, x>) = i(x).4 Can
we bound the time that it takes for a reasonable program to compute f by some function
of the time that it takes to compute each of the (i? We show that this is possible on the
standard M-Computer with a particular program that computes f(n) in the following way.

1. Decode n to the form n = <i,x>.

2. Enumerate the list of machine programs until the i machine program P. is
reached and erase everything on the tape except the integer x and the instructions P..

3. Begin the computation of (.(x) by operating on x more or less as P. would.1 1
Naturally, this requires that occasional reference be made to the instructions P. that

1
are printed on the tape.

4. When the solution (l(x) is reached, erase the symbols representing the machine
program P. and leave only the symbols representing this output.

Suppose that Pj is this program for f. Then the contributions to F (n) made by the

four steps outlined above are:

1. g'(n) = time required to decode n as <i,x>.

2. g"(i) = time required to enumerate the programs up to P..
1

3. g"'(i(x)) = time required to compute cP(x) with occasional glances at P . (g"'
is total, although g"'( Pi(x)) will diverge if ( (x) diverges.)

4. g""(i) = time required to erase P..
1

Hence F (<i,x>) = g'(<i,x>) + g"(i) + g"'( i(x)) + g""(i), where g',..... g"" are total

recursive functions. More accurately,

g'(<i, x>) + g"(i) + g'"(Di(x)) + g""(i) if (i(x) converges

F.( i, x ) =
J i divergent otherwise.

Our next theorem deals with an arbitrary M-Computer C; it proves that if j is any
index for the function f, then there exists a total recursive function g determined by
the index j such that F (<i, x>) < g(i) + g(x) + g0 i(x) for all i and x. An unexpected

feature of this theorem is that it holds even when the program for f is "unreasonable."

QPR No. 72 244



(XXVI. NEUROPHYSIOLOGY)

LEMMA: Let h be a total recursive function of n variables. Then there exists

a monotonically increasing total recursive function g of one variable such that

h(x' I ... x n ) < g(x I ) + ... + g(xn) for all non-negative integers xl, ... , x n .

PROOF: Trivial. Q.E.D.

THEOREM 4: Let C be an M-Computer. Let j be an index for the function f defined

by f(< i, x>) = .i(x) for all i and x. Then there exists a total recursive function g such

that, for all i and x, Fj (<i,x>)< g(i) + g(x) + g(i(x)) whenever i(x) converges.

PROOF: We shall prove the existence of a total recursive function h such that for

all i and x, if .i(x) converges, then Fj (<i,x>) = h i, x, (x)) . The existence of the

desired g then follows from the lemma. To compute h(i, x, z), first, determine, by

means of the a-function, whether or not c.(x) = z. If not, let h(i, x, z) = 0. Otherwise,

compute Fj(< i, x>) (it must converge, since 1.(x) convergent -4).(x) convergent
f i a 1

f .(<i,x>) convergent-- F.(<i, x>) convergent), and let h(i, x, z) = F.(<i,x>). This

h is clearly the desired total recursive function. Q.E.D.

We shall now give three other theorems that are very much like the one above. Our

purpose is to provide a method, although the statements are interesting in themselves.

All theorems are proved for an arbitrary M-Computer aC.
THEOREM 5: Let x be a non-negative integer. Let s be a total recursive function

such that for all i, j and x

.(x) if X < x
fs(i, j)(x) =

j ( x) if x > x
o

Then there exists a total recursive function g such that for almost all x greater than

x, aF s(i )(x) -< g(x) + g(j) + g( 1(x)) whenever j(x) converges.

PROOF: Note that the existence of a total recursive function s follows from an

application of the s-m-n theorem to the function

.i(x) if x < x

r (i, j, x) =

!.(x) if x > x

We first prove the existence of a total recursive function h such that for almost all x

F s(i,(x) < h(xj, .(x) whenever P (x) converges. To compute h(x, j,z), proceed

as follows: If x < x , let h(x,j, z) = 0. If x> x , determine whether or not .(x) = z.

If not, let h(x, j, z) = 0. Otherwise, it follows that Pj(x) converges and, by definition of

s, fs(i, j)(x) converges for all i. Let

h(x, j, z) = maximum Fs(o j)(x), F s(i x), . Fs(x, j)(x)s~, ) s•,j)sxj

QPR No. 72 245



(XXVI. NEUROPHYSIOLOGY)

Clearly, h is a total recursive function, and, if x > max[i, xo], then h(x,j, (x)) >

Fs(i, j)(x) whenever cj(x) converges. The existence of the desired function g follows

from the existence of h by the lemma. Q.E.D.

THEOREM 6: Let s be a total recursive function such that s(i)(x) = i(x)(x) for all

i and x. Then there exists a monotonically increasing total recursive function g such

that for all i and x

s(i)) x g(x) + g(i) + g (i(x) + g ( i(x))

wherever 4s(i)(x) converges.

PROOF: The existence of the total recursive function s follows from a single appli-

cation of the s-m-n theorem. First, we prove the existence of a total recursive function

h such that for all i and x s(i)(x) = h x,i, (x), (x) whenever c (x) con-
s(i) h xi(x) . s(i)

verges. To compute h(x, i, y, z), determine whether or not i.(x) = y. If not, let

h(x, i, y, z) = 0. Otherwise, determine whether or not Dy (x) = z. If not, let h(x, i, y, z) =0.

Otherwise, compute -s(i)(x), which must converge because (D (x) converges to z.

Let h(x, i, y, z) = fs(i)(x). Obviously, h is a total recursive function and the existence

of the desired total recursive function g follows. Q.E.D.

THEOREM 7: Let y be the function defined in Theorem 3. Then there exists a

monotonically increasing total recursive function g such that for all i and x

g(iG(x) < g(x) + g(i) + g( mi(x))

whenever i(x) converges.

PROOF: Let

0 if a (x) zi

h(x, i, z) =

h (x) if 1 .i(x) = z.

h is total recursive and (i)(x) = h(x, i, i(x)) whenever 4 i(x) converges. The exist-

ence of g follows immediately. Q.E.D.

6. Existence Theorems

The complexity of a function f often increases with x, so that a reasonable program

for f computes f(x) more slowly than f(x-1) for all x. For example, the function f(x) =

22 x seems to be of this type. If f is 0-1 valued, however, the time that it takes a pro-

gram to compute it can often be drastically cut by a second program for infinitely many

choices of x, and for these x the second program often computes f(x) more quickly than

QPR No. 72 246



(XXVI. NEUROPHYSIOLOGY)

f(x-1). For example, it seems that a reasonable program for the function

f(x) if 2X+ 1 is prime

f 0 otherwise

must require more time to compute f(x) than f(x-1), since the time required to compute

2X+l exceeds the time required to compute Zx - 1+1. A theorem in number theory, how-

ever, states that 2x+1 can be an odd prime only if x = 2 y for some y; hence f(x) = 0 if

x # 2
y . Clearly, this theorem speeds the computation of f(x) for x # ZY , so that, for

infinitely many x, f(x) can be computed more quickly than f(x-l). Nevertheless, it does

not seem that every 0-1 valued total recursive function f can be simplified in this way.

Intuition tells us that there exist 0-1 valued functions f with the property that every

reasonable program for f must compute f(x) more slowly than f(x-l). We now confirm

our suspicions.

THEOREM 8: To each total recursive function h there corresponds a total recursive

function r with r(x) > h(x) for all x, and a 0-1 valued total recursive function f so that

i. If i is any index for f, then F.(x) > r(x) for almost all x.

ii. There exists an index k for f so that r(x+1) > Fk(x) > r(x) for almost all x.

PROOF: Let g be the total recursive function of Theorem 7. First, we prove the exist-

ence of a total recursive function j such that (x) > max h(x), g(x-1)+g(j)+g (x-1)

for all x. Then we define p as follows:

h(0) + 1 if x = 0

p(i, x) = 1 + max h(x), g(x-1)+g(i)+g (i(x-1) if x > 0 and q(x-1) converges

divergent otherwise.

Here, p is partial recursive, since h and g are total recursive, and the convergence

of eP(x-1) implies the convergence of ~i(x-1). By the s-m-n theorem, there exists a

total recursive function s such that (s(i)(x) = p(i, x) for all i and x. The recursion
5,6

theorem asserts the existence of an integer j such that Pj = qs(j); hence, cj(x) =p(j, x)

for all x. To see that c. is the desired total recursive function, first note that j (0) =

h(0) + 1. Assume that cPj(y) converges for all y < x. Then by definition of p and the

fact that (x-1) converges, j (x) = 1 + maxlh(x), gx-1)+g(j)+g(i (x-1)I must con-

verge. Hence the existence of j. is proved.

Let r = j. Then r is total recursive and r(x) > h(x) for all x (by definition of #.)
as desired. Let y(j) be the index of a function f. Then by Theorem 3 and the fact that

r is total, f(x) = 0 or 1 for all x, and if i is any index for f, then Fi(x) > r(x) for

almost all x. This proves property (i). i(x) > g(x-1) + g(j) + g (Cj(x-1)) (by definition

of p) > (j)(x-1) (by Theorem 7) = F (j)(x-1) (by definition of f). Let k = 'y(j). Then

QPR No. 72 247



(XXVI. NEUROPHYSIOLOGY)

since ci = r, r(x) > Fk(x-l)> r(x-l) for all positive integers x. This proves property

(ii) and completes the proof of this theorem. Q.E.D.

Note: The recursion theorem can be tricky and must be applied with care. In par-

ticular, the statement c = s(j) does not imply that sj = s(j)' since s(j) may be dif-

ferent from j.

A function rarely enjoys a unique quickest program for its computation. If the

function is reasonably complex, no matter what program is chosen to compute it, another

can be found which cuts the computation time in half for infinitely many x. Thus a pro-

gram for f which takes x seconds to compute for infinitely many x could be replaced

by another program that takes only x/2 seconds, and then again by another program that

takes only x/4 seconds, and so on. As a simple example, suppose that we wish to know

if an integer written in radix 10 is a palindrome. To solve this problem we write a pro-

gram for the standard M-Computer which computes the function

1 if x is a palindrome

f(x) =

f(x otherwise.

The program is such that when the input integer is x = 3726854586273, the computer

scans the rightmost digit 3 and goes down the tape to compare it with the leftmost digit

3, then back up to rightmost digit 7, and down to leftmost digit 7, and so on. After

opposing digits have been compared, the computer prints an output 1. With a quicker

program, the computer scans the rightmost digits 7 and 3 simultaneously, then goes

down the tape to leftmost digits 3 and 7, then back up to digits 6 and 2, and so on, com-

paring the digits two at a time rather than one at a time. This program takes approxi-

mately one-half the time of the slower one for all palindromes. It can be shown, in fact,

that no matter which program is chosen to compute this f, another can be given which

computes f in one-half the time for almost all palindromes. One can further prove the

existence of a total recursive function g with the property that to every program P. for
1

g there corresponds a quicker program P. for which Gi(x)> 2Gj(x) for almost all x.

Can a stronger theorem be proved? In particular, can we find a function with the

property that to every program P. for f there corresponds a program P. so much quicker
F .(x)

that F.(x) > 2 J for almost all x?
1

THEOREM 9: Let r be a total recursive function of two variables. Then there

exists a total recursive function f with values 0 and 1 such that to every index i for f,

there corresponds another index j for f such that F.(x) > r x, (x) for almost all x.

PROOF: (1) The d and s functions.

Construct a G6del table that contains the symbol r (c) at the intersection of row r

and column c. To compute d(i,x): First, compute i(0), (1), 1 ..... .(x). If any of

these diverge, let d(i, x) diverge. Otherwise, use the a-function to circle all entries

QPR No. 72 248



(XXVI. NEUROPHYSIOLOGY)

c (x) in column x with j < x and .1j(x) - Pi(x-j). Then check the first circled entry k(X),

if any, with the property that ck(y) has not been checked for y < x (it is possible to deter-

mine if ck(y) has been checked for y < x, since i(O) ...... (x) converge). If none of

the entries o(X), ..... x (x) in column x are checked, let d(i, x) = 0. Otherwise (a single

entry ck(x) is checked), let d(i, x) = 0 if ck(x) * 0 and let d(i, x) = 1 if k(x) = 0. Clearly,

d is partial recursive and if ci is total then d is total. Let s be a total recursive func-

tion which satisfies the equation d(i, x) = s(i)(x) for all i and x (the existence of s is

ensured by the s-m-n theorem). Note that if ci is total and if j is any index such that

then (x) > ci(x-j) for almost all x (for otherwise kj(x) C< i(x-j) for infi-
j s(i)' t

nitely many x = x 1 , x 2 , .. ; then in the computation of d, an entry j(xk) is checked and

thus, d(i, xk) \j(xk), which implies that cj s(i) which is a contradiction).

(2) The e and t functions.

Define a function e of four variables x, u, v, i as follows:

CASE I v <u: Let e(x,u,v, i) = e(x,u,u+l, i).

CASE II v > u: Construct a G6del table and box row u and column v.

v=3

4o(0) 4o(1) (2) (3(4)
0 - 0 0 0 ) 0

u=l 1

#2(0) (2 ( 1 )  2(2) 2(3) 2(4)

43(0) 43(1) 3(2) 3(3) 4 3(4)

4(0) 4(1) 4(2) 4(3) 4(4)

If x < v, let e(x, u, v, i) = d(i, x). If x >v, compute 4i(0), Qi (1), ... ~ (x-u) and, if any

of these diverge, let e(x,u,v,i) diverge. Otherwise, circle all entries )j (x) in column

x with j > u and j < x and .(x) -< i(x-j). Then check the first circled entry ck(x), if

any, with the property that 4 k(y) has not been checked for v < y < x during the compu-

tation of e(y, u, v, i) or for y < v during the computation of d(i, y). If none of the entries

(x) . ... x(x) is checked, let e(x,u,v,i) = 0. Otherwise (a single entry k(X) is

checked), let e(x, u, v, i) = 0 if k(x) f 0, and let e(x, u, v, i) = 1 if #k(x) = 0. Clearly, e

is partial recursive, and, if 9i is total, then e is total. Let t be a total recursive func-

tion such that e(x, u, v, i) = t(u, v,i)(x) for all x, u, v, and i. Note that

4t(o, 0, i)(x) = e(x, o, o, i) = d(i, x) = ds(i)(x) for all i and x.

(3) Choose a total recursive 1-1 map of the integers onto the set of all

1-tuples, 2-tuples, 3-tuples, ... of integers. Let <<ao , .. an> denote the integer that

QPR No. 72

1( 0 ) # ( ) ( 2 ) ( 3 ) 1(4 )

249



(XXVI. NEUROPHYSIOLOGY)

maps into (ao'
that for all x,

.. , an) . We now prove the existence of a total recursive function g such

u, v, and i

Sg(x,u, v,i,<< ai .(0).. .a i(x-u)>)

t(u, v,i)(x)
diverges otherwise.

if 4i(), ..... i(x-u)

converge

To compute g(x, u, v, i, z), first, expand z according to the above-given coding as
z = <<ao , .... axu >> . Then, determine, by means of the a-function, whether or not # (0) =
ao ...... ' i(x-u) = a . If not, let g(x, u, v, i, z) = 0. Otherwise, t(u, , i(x) con-

verges; thus let g(x, u, v, i, z) = t(u,v,i)(x).

(4) Let r be the function in the statement of the theorem and let g be the
function of part (3). We now prove the existence of a total recursive function c. such

1

that for all u and v and for almost all x

rF g x, , o< (0),..., 0 (x-u) >> 0 (x-u+1).

Define h as follows:

h(i, o) = 0

h(i, z+ ) =

max rLz+w, gz+wwvi, (0), . . . (z)>Ow vz if i(O) .... , i(z) converge

divergent otherwise

By the s-m-n theorem, there exists a total recursive function p such that h(i, z) =p( (z)5 P (i)
for all i and z. By the recursion theorem, there exists an index i0 such that P (iz)( ) =

Ci (z) for all z. Then C i (0) = 0. Assume that C i (x) converges for x < z. Then ci (z+1)
O O O O

converges, since g and r are total recursive, and convergence of i for x<z implies con-
0

vergence of (i (x) for x<z. Therefore #i is total recursive. Fix the values of u and v;
0 o

then, for x > max[2u,u+v], i (x-u+1) xr , g ,u,v,io' io(0), ... (x-u)>

(5) We now show that for all u there exists a v such that t(u, =
t(u, v, i O)

t(o, o, io ) Since io is total recursive, so is t(o, Recall that the computation

of ct(o,o i )(x) proceeds in two stages.

Stage 1: With respect to the Gbdel table, certain entries in column x are circled

and then one of these entries may be checked.

Stage 2: ct(o, o, i (x) is made equal to zero if no entry in column x is checked;
0

QPR No. 72 250



(XXVI. NEUROPHYSIOLOGY)

otherwise, its value is made to depend on that of the checked entry.

If, in the Gbdel table, row u is boxed, the number of entries above this row which

are checked in the computation of t(o, o, i must be finite, since a row may contain at

most one checked entry. Box the column v that lies to the right of the last checked entry

above row u. Then by definition of t,

( i(x) = t(u V, i(x) for all x.

(6) We now define the function f in the statement of the theorem as f(x) =

o, oi (x) for all x. The function f is total recursive, since Pi , and therefore
t(o, o, i)

t(o i is total recursive. To prove the

be chosen according to part (5), so that t(i+

rx, l . , ) (x) = r , g ,
r L t(i+ I1, v, i )

< Q. (x-i)

< F.(x)
1

theorem, let i be any index for f. Let v

) 
=  to, ) 

= f . Then
O O

i + 1, v , i ,  << 4 .  (0), . I ( i (x-i-1) >>If
o 1!

(according to part (3), since Qi is total)
o

(according to part (4))

(since f(x) = t(o,o,io)(X) =  (i)(X) as

pointed out in the last sentence of (2),
and for reasons stated in the last sen-
tence of (1)).

for almost all x.

desired.

Let j = t(i+l,v, i ). Then
o0

for almost all x, r x, F.(x)i < aFi(x) as

Q.E.D.

7. Implications of Theorem 9

The implications of Theorem 9 are stated for the standard M-Computer, although

they are true for any other M-Computer.

1. Let r(x, y) = 2Z. Then Theorem 9 asserts the existence of a total recursive func-

tion f such that to every index i for f there corresponds another index j such that

F.(x) > 2 3 for almost all x. Hence it also asserts that to index j there corresponds
1 F .(x)

Fk(x)  2
an index k such that F.(x) > 2 and to k an index 1 such that F.(x) > 2 , and

1 1

so on. Hence there exists an infinite sequence of programs for f, starting with any pro-

gram that one chooses so that each program in the sequence is followed by a much

quicker one. Unfortunately, Theorem 9 does not provide an effective procedure for going

from one program in the sequence to the next.

QPR No. 72 251



(XXVI. NEUROPHYSIOLOGY)

2. Let r(x, y) = 2x + 2z and let f be the corresponding function of Theorem 9. Let

g(x) be a lower bound on the time that it takes to compute f(x), that is, g(x) < F (x) for

every index i for f and for almost all x. The function g(x) can be taken to be at least

as large as 2x , since there corresponds to every index i for f an index j such that

F.(x) > 2x+ 2 (x , and therefore F.(x)> 2x for almost all x. Given any such lower
g) 2 g(x) 1

bound g(x), we know that 2 is also a lower bound, since there corresponds to the
Fk(x)

index j for f which is given above another index k such that F.(x) > 2x + 2 k and
F k (x )  Fk(x)+ 22+2 2 2g(x)

Fk(x) > g(x) so that Fi(x) > + 2 +  > 2 > 2 for almost all x. In this

way we can obtain an increasing sequence of lower bounds on the computation time of f,

starting with any lower bound that we choose. Note in particular that there can be no

such thing as a greatest lower bound on the computation time of f.

3. Theorem 9 exhibits a function f, and in fact infinitely many distinct functions,

so that the time required to compute f with any program can be halved for almost all

x by some other program, that is, there corresponds to every index i for f another

index j such that Fi(x) > 2F (x) for almost all x. This suggests a possible way of dealing

with the function

f(x) = l if 22x+1 is prime

otherwise,

which was introduced in section 2. The hypothesis there asserts that f = g, where

1 if x < 5
g(x) 0

if x > 5 .

On the standard M-Computer, one can give a program for g whose computation time

cannot be reduced by any other program. If one can show, therefore, that the compu-

tation time of every program for f can be halved for almost all x, or even for infinitely

many x, then the hypothesis must be false.

4. Rabin has defined a partial ordering on the set of partial recursive functions in

terms of the time required to compute these functions. Essentially, f is said to be more

difficult to compute than g, written f -g, if there exists a program P. for g such that
1

F(x) > G.i(x) for all programs P. for f and for almost all x. Rabin's theorem, then,

asserts that to every total recursive function g there corresponds a 0-1 valued total

recursive function f such that f /- g. We can now obtain another interesting fact. Let

r(x, y) = 2 y and let f be the corresponding total recursive function of Theorem 9. Let h

and g be total recursive functions such that h - f -g. Then there exists a program P.

for g such that F.(x) > Gi(x) for all programs P. for f and for almost all x. Theorem 9J 1 J

QPR No. 72 252



(XXVI. NEUROPHYSIOLOGY)

Fk(x)
asserts that there exists a program Pk for f such that F. (x)> 2 and, since Fk(x)>

G.(x)
G.(x), it follows that F.(x) > 2 for almost all x. Similarly, one can show that

1 G.(x)

F.(x) > 2 for almost all x, and so on. On the other hand, since h - f, there exists

a program Pk for f such that Hf(x) > Fk(x) for every program P1 for h. Since H (x) >

Fk(x) Fk(x)
F x) > 2 , it follows that H,(x) > 2 for almost all x. This argument can be

continued. Hence h is much more difficult than f and f is much more difficult than g,

and since h and g are arbitrary total recursive functions satisfying h )- f 2- g, it follows

that no function comparable to f comes even close to being equal in difficulty to f.

M. Blum

References

1. Any effective list of all partial recursive functions is equivalent to the list o'
~1 ... determined by the standard M-Computer, as we show in Example 4.

2. The enumeration theorem asserts the existence of a partial recursive function f
of two variables i and x such that

f(ix) = i ( x) if ci(x) converges

divergent otherwise.

The s-m-n theorem, in a weak form that we require, asserts the existence of a total
recursive function s such that ci(<x,y>) = cs(i,x)(y).for all i, x, and y.

3. M. O. Rabin, Degree of Difficulty of Computing a Function and a Partial Ordering
of Recursive Sets, Hebrew University, Jerusalem, Israel, April, 1960.

4. The symbol <> denotes the standard coding of N x N into N: < 0, 0> = 0, <0, 1>= 1,
<1,0> = 2, <0,2> = 3, <1,1> = 4, <2,0> = 5,.

5. A simplified form of Kleene's recursion theorem asserts that to every total
recursive function s there corresponds an integer j such that s(j) = j

6. H. Rogers, Jr., Recursive Functions and Effective Computability (McGraw-Hill
Book Company, Inc., New York, in press).

C. OLFACTION

The slow potential of the frog's olfactory mucosa (the electro-olfactogram or EOG),

which is recorded by a surface electrode when an odor reaches the nose, is a complex

waveform. This has become apparent from a series of experiments in which a wide vari-

ety of odorous stimulil was used. In addition to the large negative potential described

by Ottoson,2 there are at least two phenomena that occur before the negative swing and

are generated at a different location from that of the negative potential. The early events

are seen in different combinations with different stimuli and consist either of an initial

positive swing (thought by Ottoson to be an artefact resulting from charged water-vapor

molecules) or an initial small negative wave, or both. Figure XXVI-1 illustrates the

QPR No. 72 253



(XXVI. NEUROPHYSIOLOGY)

ANISOLE

L
Fig. XXVI-1. The EOG recorded from the olfactory mucosa of the frog.

Calibration marks in all figures indicate 1 my (positive
upward) and 1 sec. Short puffs of anisole vapor were de-
livered just before the sharp upward deflection. The re-
sponse was recorded with a gelatin salt bridge electrode,
30 1 . in diameter, touching the mucosa surface.

initial positive-going potential. It shows the response to 6 successive short puffs of

anisole vapor on a single sweep 20 seconds in duration. The first puff elicits a small

positive (upward) deflection followed by a large negative deflection. The next puff of odor

appears to interrupt the negative process and return the potential very nearly to the

resting value for a very short time before the large negative potential occurs again.

Following a notion recently advanced by Lettvin to account for membrane and recep-

tor phenomena, we suggest this explanation of the phenomena shown in Fig. XXVI- 1:

The odor molecules can have two effects on the membrane or receptor sites. Those

stimuli to which a receptor or part of a receptor is sensitive in one way (that is, which

cause an action potential to be generated) cause the receptor to depolarize there, which

in these experiments shows up as a small initial negative potential. Other receptors that

are sensitive in another way to the odor are actively clamped to membrane potential by

a mechanism that causes a low impedance across the membrane without changing its

potential. It is not unreasonable to connect the depolarization with sodium ion perme-

ability, and the impedance shunt with potassium ion or chloride ion permeability. The

tendency to return to resting potential independently of the magnitude of the large nega-

tive wave (shown in Fig. XXVI-1) is reminiscent of the crayfish stretch receptor.5 There

is no reason, in principle, why a stimulus, particularly a chemical one, cannot be inhib-

itory in the same sense as the postulated chemical transmitters. For a given stimulus

there are many more nonresponding cells than there are responding units; hence the

initial negative event is seen only under special conditions related to a highly sensitive

QPR No. 72 254



DICHLOROBENZALDEHYDE

Fig. XXVI-2. Response to 2, 4-dichlorobenzaldehyde.

GERANIOL

L
Fig. XXVI-3. Response to geraniol.

METHANOL

L
Fig. XXVI-4. Response to methanol.

QPR No. 72

_ __ __ _____

255



(XXVI. NEUROPHYSIOLOGY)

depolarization effect and a rather insensitive shunt effect. This is shown in Fig. XXVI-2.

Stimuli that can diffuse quickly and reach the receptor with very little spread in arrival

time will show the initial events more clearly than slower-moving molecules. In the

latter case, the action-potential response will mask most of the early events, as shown

in Fig. XXVI-3. Methanol, which is odorless to the experimenters, produces the EOG

shown in Fig. XXVI-4. It is positive only, with no sign of an initial depolarization and

little or no sign of the action-potential negative wave.

R. C. Gesteland, J. Y. Lettvin, W. H. Pitts

References

1. R. C. Gesteland, Some Positive Aspects of Smell, Proc. Conferences on Recent
Advances in Odor, New York Academy of Sciences, 1963 (in press).

2. D. Ottoson, Acta Physiol. Scand. (Stockholm) 35, Suppl. 122, 1956.

3. D. Ottoson, Acta Physiol. Scand. (Stockholm) 47, Suppl. 149, 1959.

4. J. Y. Lettvin, Quarterly Progress Report No. 70, Research Laboratory of Elec-
tronics, M.I.T., July 15, 1963, page 327.

5. C. Eyzaguirre and S. W. Kuffler, J. Gen. Physiol. 39, 87 (1955).

QPR No. 72 256


