38 research outputs found

    Are coastal habitats important nurseries? A meta-analysis

    Get PDF
    Nearshore‐structured habitats—including underwater grasses, mangroves, coral, and other biogenic reefs, marshes, and complex abiotic substrates—have long been postulated to function as important nurseries for juvenile fishes and invertebrates. Here, we review the evolution of the “nursery habitat hypothesis” and use \u3e11,000 comparisons from 160 peer‐reviewed studies to test whether and which structured habitats increase juvenile density, growth, and survival. In general, almost all structured habitats significantly enhanced juvenile density—and in some cases growth and survival—relative to unstructured habitats. Underwater grasses and mangroves also promoted juvenile density and growth beyond what was observed in other structured habitats. These conclusions were robust to variation among studies, although there were significant differences with latitude and among some phyla. Our results confirm the basic nursery function of certain structured habitats, which lends further support to their conservation, restoration, and management at a time when our coastal environments are becoming increasingly impacted. They also reveal a dearth of evidence from many other systems (e.g., kelp forests) and for responses other than density. Although recent studies have advocated for increasingly complex approaches to evaluating nurseries, we recommend a renewed emphasis on more straightforward assessments of juvenile growth, survival, reproduction, and recruitment

    In Situ Oxygen Dynamics in Coral-Algal Interactions

    Get PDF
    Background: Coral reefs degrade globally at an alarming rate, with benthic algae often replacing corals. However, the extent to which benthic algae contribute to coral mortality, and the potential mechanisms involved, remain disputed. Recent laboratory studies suggested that algae kill corals by inducing hypoxia on the coral surface, through stimulated microbial respiration. Methods/Findings: We examined the main premise of this hypothesis by measuring in situ oxygen microenvironments at the contact interface between the massive coral Porites spp. and turf algae, and between Porites spp. and crustose coralline algae (CCA). Oxygen levels at the interface were similar to healthy coral tissue and ranged between 300-400 ΌM during the day. At night, the interface was hypoxic (~70 ΌM) in coral-turf interactions and close to anoxic (~2 ΌM) in coral-CCA interactions, but these values were not significantly different from healthy tissue. The diffusive boundary layer (DBL) was about three times thicker at the interface than above healthy tissue, due to a depression in the local topography. A numerical model, developed to analyze the oxygen profiles above the irregular interface, revealed strongly reduced net photosynthesis and dark respiration rates at the coral-algal interface compared to unaffected tissue during the day and at night, respectively. Conclusions/Significance: Our results showed that hypoxia was not a consistent feature in the microenvironment of the coral-algal interface under in situ conditions. Therefore, hypoxia alone is unlikely to be the cause of coral mortality. Due to the modified topography, the interaction zone is distinguished by a thicker diffusive boundary layer, which limits the local metabolic activity and likely promotes accumulation of potentially harmful metabolic products (e.g., allelochemicals and protons). Our study highlights the importance of mass transfer phenomena and the need for direct in situ measurements of microenvironmental conditions in studies on coral stress. © 2012 Wangpraseurt et al

    Secondary Metabolites of Marine Microbes: From Natural Products Chemistry to Chemical Ecology

    Get PDF
    Marine natural products (MNPs) exhibit a wide range of pharmaceutically relevant bioactivities, including antibiotic, antiviral, anticancer, or anti-inflammatory properties. Besides marine macroorganisms such as sponges, algae, or corals, specifically marine bacteria and fungi have shown to produce novel secondary metabolites (SMs) with unique and diverse chemical structures that may hold the key for the development of novel drugs or drug leads. Apart from highlighting their potential benefit to humankind, this review is focusing on the manifold functions of SMs in the marine ecosystem. For example, potent MNPs have the ability to exile predators and competing organisms, act as attractants for mating purposes, or serve as dye for the expulsion or attraction of other organisms. A large compilation of literature on the role of MNPs in marine ecology is available, and several reviews evaluated the function of MNPs for the aforementioned topics. Therefore, we focused the second part of this review on the importance of bioactive compounds from crustose coralline algae (CCA) and their role during coral settlement, a topic that has received less attention. It has been shown that certain SMs derived from CCA and their associated bacteria are able to induce attachment and/or metamorphosis of many benthic invertebrate larvae, including globally threatened reef-building scleractinian corals. This review provides an overview on bioactivities of MNPs from marine microbes and their potential use in medicine as well as on the latest findings of the chemical ecology and settlement process of scleractinian corals and other invertebrate larvae

    Seawater carbonate chemistry and skeletal density of hardground-forming high-latitude Crustose Coralline Algae

    No full text
    Crustose coralline algae (CCA) function as foundation species by creating marine carbonate hardground habitats. High‐latitude species may be vulnerable to regional warming and acidification. Here, we report the results of an experiment investigating the impacts of CO2‐induced acidification (pCO2 350, 490, 890, 3200 ”atm) and temperature (6.5, 8.5, 12.5°C) on the skeletal density of two species of high‐latitude CCA: Clathromorphum compactum (CC) and C. nereostratum (CN). Skeletal density of both species significantly declined with pCO2. In CN, the density of previously deposited skeleton declined in the highest pCO2 treatment. This species was also unable to precipitate new skeleton at 12.5°C, suggesting that CN will be particularly sensitive to future warming and acidification. The decline in skeletal density exhibited by both species under future pCO2 conditions could reduce their skeletal strength, potentially rendering them more vulnerable to disturbance, and impairing their production of critical habitat in high‐latitude systems

    Host-associated microbiomes drive structure and function of marine ecosystems

    No full text
    The significance of symbioses between eukaryotic hosts and microbes extends from the organismal to the ecosystem level and underpins the health of Earth's most threatened marine ecosystems. Despite rapid growth in research on host-associated microbes, from individual microbial symbionts to host-associated consortia of significantly relevant taxa, little is known about their interactions with the vast majority of marine host species. We outline research priorities to strengthen our current knowledge of host-microbiome interactions and how they shape marine ecosystems. We argue that such advances in research will help predict responses of species, communities, and ecosystems to stressors driven by human activity and inform future management strategies

    Keystone predators govern the pathway and pace of climate impacts in a subarctic marine ecosystem

    No full text
    Predator loss and climate change are hallmarks of the Anthropocene yet their interactive effects are largely unknown. Here, we show that massive calcareous reefs, built slowly by the alga Clathromorphum nereostratum over centuries to millennia, are now declining because of the emerging interplay between these two processes. Such reefs, the structural base of Aleutian kelp forests, are rapidly eroding because of overgrazing by herbivores. Historical reconstructions and experiments reveal that overgrazing was initiated by the loss of sea otters, Enhydra lutris (which gave rise to herbivores capable of causing bioerosion), and then accelerated with ocean warming and acidification (which increased per capita lethal grazing by 34 to 60% compared with preindustrial times). Thus, keystone predators can mediate the ways in which climate effects emerge in nature and the pace with which they alter ecosystems
    corecore